# MEMORIAL UNIVERSITY OF NEWFOUNDLAND 

DEPARTMENT OF MATHEMATICS AND STATISTICS

Ph.D. Qualifying Exam
ANALYSIS
Fall 2008

The exam consists of 4 sections. Solutions to at least one and at most two questions in each section must be submitted. The perfect score will be awarded for 6 questions fully solved. Each whole question carries equal credit. More credit will be given for complete solutions than for a proportionate number of parts.

Allotted time: 3 hours.

## Part A: Real Analysis

A1. Consider the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{n} \tag{1}
\end{equation*}
$$

(a) Determine for which values of $x \in \mathbb{R}$ the series (1) converges and for which $x \in \mathbb{R}$ it converges absolutely.
(b) Prove that the series (1) converges uniformly on $[0,1]$.
(c) Suppose $x \in[0,1]$. Let $S(x)$ denote the sum of the series (1) and let $S_{n}(x)$ denote the $n$-th partial sum. Prove that if $x_{n} \rightarrow 1^{-}$, then $S_{n}\left(x_{n}\right) \rightarrow S(1)$ as $n \rightarrow \infty$.
(d) Evaluate $S(1)$.

A2. (a) Let $f(x)$ be a real-valued function defined on some subset of $\mathbb{R}^{n}$. Give definitions of the following:

- $f(x)$ is continuous at the point $x^{*} \in \mathbb{R}^{n}$;
- $f(x)$ is continuous in the domain $D \subset \mathbb{R}^{n}$;
- $f(x)$ is differentiable at the point $x^{*} \in \mathbb{R}^{n}$.
(b) Suppose $f(x)$ is differentiable at $x^{*} \in \mathbb{R}^{n}$ and $f\left(x^{*}\right)=0$. Prove that if $n>1$, then

$$
\liminf _{x \rightarrow x^{*}} \frac{|f(x)|}{\left\|x-x^{*}\right\|}=0
$$

(c) Does the statement (b) hold true in the case $n=1$ ? Explain your answer.

A3. (a) Define the improper Riemann integral $\iint_{\mathbb{R}^{2}} f(x, y) d x d y$.
(b) Show that the Riemann integral

$$
\iint_{\mathbb{R}^{2}}\left(x^{2}+y^{2}+1\right)^{-s} d x d y \quad(s \in \mathbb{R})
$$

exists if and only if $s>1$.

## Part B: Measure and Integration

B1. (a) Suppose $f(x)$ is Lebesgue integrable on $[0,1]$. Show that the following statements are equivalent:
(a) $\int_{E} f=0$ for each open set $E \subset[0,1]$;
(b) $\int_{E} f=0$ for each measurable set $E \subset[0,1]$;
(c) $f(x)=0$ for almost every $x \in[0,1]$.

B2. (a) State the Monotone Convergence Theorem for nonnegative measurable functions.
(b) Let $N$ be a positive integer. Prove that for any $x \in(0, N)$ the sequence $\left\{\left(1-\frac{x}{n}\right)^{n}\right\}, n=N, N+1, N+2, \ldots$, is increasing.
[Suggestion: Use logarithmic differentiation.]
(c) Use (a) and (b) to prove that for any $f \geq 0$ defined on $[0, \infty)$ and such that $f(x) e^{-x}$ is integrable the following holds:

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} f(x) d x=\int_{0}^{\infty} e^{-x} f(x) d x
$$

Suggestion: Consider $g_{n}(x)=\left\{\begin{array}{l}f(x)(1-x / n)^{n}, \quad 0<x<n \\ 0, \quad x>n\end{array}\right.$.
B3. (b) Suppose $f$ is a bounded function on $[0,2 \pi]$ and $A \subset[0,2 \pi]$ is a measurable set. Show, referring to appropriate facts or constructions of measure theory, that $\forall \varepsilon>0$ there exists a finite union $U$ of open intervals such that

$$
\left|\int_{U} f-\int_{A} f\right|<\varepsilon
$$

(b) Show (by calculation) that for any finite interval $I \subset \mathbb{R}$

$$
\lim _{n \rightarrow \infty} \int_{I} \cos n x d x=0
$$

(c) Let $A \subset[0,2 \pi]$ be a measurable set. Prove that

$$
\lim _{n \rightarrow \infty} \int_{A} \cos n x d x=0
$$

## Part C: Complex Analysis

C1. (a) Explain why the following function is analytic in some neighborhood of 0 (including the point $z=0$ ):

$$
f(z)=\left\{\begin{array}{l}
\frac{z}{e^{z}-1}, \quad z \neq 0, \\
0, \quad z=0
\end{array} .\right.
$$

(b) Find the radius of convergence of the Maclaurin series for the function $f(z)$ defined in (a).
(c) Find all singular points of the function $f(z)$ and determine their type: essential singularity, pole (of which order?), branch point, etc.

C2. (a) Find all values of the real and imaginary part of the multi-valued function $\ln (x+i y)$ in terms of $x$ and $y$.
(b) Show that the function $\arctan (y / x)$ is harmonic. Assume for simplicity that $x, y>0$ and consider the principal branch $\arctan (y / x) \in$ $(0, \pi / 2)$.
(c) Prove that if a polynomial $p(z)$ has zero of order $n$ at $z=z_{0}$ and no other zeros in the region $\left|z-z_{0}\right| \leq R$, then

$$
\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=R} \frac{p^{\prime}(z)}{p(z)}=n .
$$

C3. Prove that for any $u \in(0, \pi / 2)$

$$
\int_{0}^{2 \pi} \frac{d t}{(1+\cos u \cos t)^{2}}=\frac{2 \pi}{\sin ^{3} u}
$$

Hint: The substitution $\cos t=\left(z+z^{-1}\right) / 2$ results in a contour integral of a rational function.

## Part D: Functional Analysis

D1. (a) Prove that the space $l_{2}$ of infinite complex sequences $\left(x_{n}\right), n=$ $1,2, \ldots$, with scalar product $\langle x, y\rangle=\sum_{n=1}^{\infty} x_{n} \overline{y_{n}}$ is a Hilbert space. (Show that all requirements of the definition are met).
(b) Show that the set $\left\{e^{(k)}\right\}_{k=1,2 \ldots}$ is an orthonormal basis in $l_{2}$, where $e^{(k)}=(0,0, \ldots, 1,0, \ldots)(1$ at place $k)$. Find the distance $\left\|e^{(j)}-e^{(k)}\right\|$.
(c) Define the notion of a compact operator in a (separable) Hilbert space. Prove that the identity operator $I$ in $l_{2}$ is not compact.

D2. (a) Let $X$ and $Y$ be two normed spaces over $\mathbb{R}$, and $T: X \rightarrow Y$ a linear operator. State definitions of the following properties/concepts:

- $T$ being a continuous linear operator;
- $X^{*}$, the dual (conjugate) space to $X$ (Define the vector space operations and the norm on $X^{*}$ );
- the conjugate operator $T^{*}: Y^{*} \rightarrow X^{*}$.
(b) Suppose $X$ and $Y$ are finite-dimensional Euclidean spaces of dimensions, respectively, $m$ and $n$, with orthonormal bases, respectively, $\left\{\mathbf{e}_{j}\right\}_{j=1, \ldots, m}$ and $\left\{\mathbf{f}_{i}\right\}_{i=1, \ldots, n}$. Let $T: X \rightarrow Y$ be defined by the matrix $T_{i j}$, so that $T\left(\sum x_{j} \mathbf{e}_{j}\right)=\sum_{i, j} T_{i j} x_{j} \mathbf{f}_{i}$. Find an explicit formula for $T^{*}$.

D3. (a) State the definition of a Cauchy sequence in a metric space and the definition of a complete metric space.
(b) Let $B$ be the set of all bounded real sequences $\left(x_{n}\right), n=1,2, \ldots$. Prove that the following function is a metric on $B$ :

$$
\rho(x, y)=\sup _{n \geq 1} \frac{\left|x_{n}-y_{n}\right|}{n} .
$$

(c) Prove that the metric space $(B, \rho)$ as defined in (b) is not complete.
(d) Give the definition of a Banach space. Introduce a vector space structure and a norm on the set $B$ defined in (b) so as to make $B$ a Banach space. Give an explicit formula for the metric induced by your norm.

