Memorial University of Newfoundland Department of Mathematics \& Statistics

Ph.D. Qualifying Examination (Combinatorics) August 2008 Time: 3 hours

Attempt 6 questions, choosing a minimum of 2 questions from each of parts A and B , and a minimum of 1 question from part C .

If you attempt more than 6 questions, then the best 6 answers will determine your score (subject to requiring at least 2 questions from each of parts A and B, and at least 1 question from part C).

All questions carry equal weight.

Part A: Graph Theory

1. (a) State Brooks' Theorem and Vizing's Theorem.
(b) Describe, with proof, all connected graphs G with $\chi(G)>\chi^{\prime}(G)$.
2. (a) Prove that the complete graph K_{5} and the complete bipartite graph $K_{3,3}$ are not planar.
(b) Show, using a counterexample, that not every planar graph is properly 3 -colourable.
3. State and prove Tutte's Theorem.
4. (a) For a graph G, define $\alpha(G)$ and $\kappa(G)$.
(b) Prove the Chvátal-Erdös Theorem: if G is a graph on at least 3 vertices such that $\alpha(G) \leq \kappa(G)$, then G contains a Hamilton cycle.

Part B: Design Theory

1. (a) State the first Heffter difference problem.
(b) Show that the existence of a Skolem sequence of order n implies the existence of a solution to the first Heffter difference problem, and as a consequence the existence of a cyclic $\operatorname{STS}(6 n+1)$.
2. (a) Use the Skolem construction to construct an STS(19).
(b) Prove that the Bose construction produces an $\operatorname{STS}(6 n+3)$.
(c) Describe how to construct a maximum packing for $v \equiv 5(\bmod 6)$.
3. (a) Prove Wilson's Fundamental Construction: Let $G D D(P, \mathcal{G}, \mathcal{B})$ be a group divisible design on the points P with \mathcal{G} being the set of groups and \mathcal{B} being the set of blocks. Let w be a positive integer called the weight, and $W=\{1,2,3, \cdots, w\}$. If, for each $b \in \mathcal{B}$, there exists a $G D D(W \times b,\{W \times\{p\} \mid p \in b\}, \mathcal{B}(b))$, then there exists a $G D D\left(W \times P, \mathcal{G}^{\prime}, \mathcal{B}^{\prime}\right)$ with $\mathcal{G}^{\prime}=\{W \times g \mid g \in \mathcal{G}\}$ and $\mathcal{B}^{\prime}=\bigcup_{b \in \mathcal{B}} \mathcal{B}(b)$.
(b) Given a $G D D\left(P_{1}, \mathcal{G}_{1}, \mathcal{B}_{1}\right)$ where $P_{1}=\{1,2,3, \ldots, 12\}$, $\mathcal{G}_{1}=\{\{1,5,9\},\{2,6,10\}$, $\{3,7,11\},\{4,8,12\}\}$, and $\mathcal{B}_{1}=\{\{1,2,3,4\},\{1,6,8,11\},\{1,7,10,12\},\{2,5,11,12\}$, $\{2,7,8,9\},\{3,5,8,10\},\{3,6,9,12\},\{4,5,6,7\},\{4,9,10,11\}\}$, and a $G D D\left(P_{2}, \mathcal{G}_{2}, \mathcal{B}_{2}\right)$, where $P_{2}=\{1,2,3, \ldots, 14\}, \mathcal{G}_{2}=\{\{i, 7+i\} \mid 1 \leq i \leq 7\}$, and $\mathcal{B}_{2}=\{\{i, i+1, i+$ $4, i+6\} \mid 1 \leq i \leq 14\}$, use Wilson's Fundamental Construction and weight $w=3$ to produce a $G D D\left(P \times W, \mathcal{G}^{\prime}, \mathcal{B}^{\prime}\right)$, where the groups of \mathcal{G}^{\prime} are of order 6 , and the blocks of \mathcal{B}^{\prime} are of order 4 .
4. (a) Let $T D(n, k)$ be a transversal design with groups of size n and blocks of size k (where each pair of elements occur in a block or a group exactly once). Prove that the existence of a $T D(n, k+2)$ is equivalent to the existence of a set of k mutually orthogonal latin squares of order n.

(b) Use $L_{1}=$\begin{tabular}{|l|l|l|l}
\hline 1 \& 3 \& 4 \& 2

\hline 4 \& 2 \& 1 \& 3

\hline 2 \& 4 \& 3 \& 1

\hline 3 \& 1 \& 2 \& 4

 and $L_{2}=$

\hline 1 \& 4 \& 2 \& 3

\hline 3 \& 2 \& 4 \& 1

\hline 4 \& 1 \& 3 \& 2

\hline 2 \& 3 \& 1 \& 4

\hline
\end{tabular} to construct a $T D(4,4)$.

Part C: Enumeration

1. (a) Prove the Binomial Theorem: if $n \in \mathbf{N}$, then for all $x, y, \in \mathbf{R}$,

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i} .
$$

(b) Prove that

$$
\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots .
$$

(c) Use a combinatorial argument to prove that

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

2. (a) Use two methods to find the solution to the recurrence relation $g_{n}=5 g_{n-1}-$ $4 g_{n-2}+2 \cdot 3^{n}$ where $g_{0}=1$ and $g_{1}=5$.
(b) Determine the generating function for the number h_{n} of solutions of the equation

$$
e_{1}+e_{2}+\cdots+e_{k}=n
$$

in nonnegative odd integers $e_{1}, e_{2}, \ldots, e_{k}$.
(c) Find h_{n} as described in part (b) when $k=5$ and $n=30$.
3. (a) State Burnside's Counting Theorem and Polya's Enumeration Theorem.
(b) Find the cycle index for 2-edge colourings of a tetrahedron, and use this to find the corresponding pattern inventory.

