1. Consider the initial value problem (IVP):

\[y' = f(t, y), \quad y(t_0) = y_0. \]

(a) Write down a set of conditions on the scalar function \(f(t, y) \) so that this IVP has a unique solution in some interval containing \(t_0 \).

(b) Outline the method of successive approximations (i.e., the Picard iteration method) for the existence of a solution to the IVP.

2. Assume that \(\omega^2 \neq 4 \). Use the Laplace transform to solve the initial value problem

\[y'' + \omega^2 y = \cos 2t, \quad y(0) = 1, \quad y'(0) = 0. \]

3. Let \(C((\alpha, \beta), \mathbb{R}^n) \) be the standard vector space over \(\mathbb{R} \) of all continuous functions from \((\alpha, \beta) \) to \(\mathbb{R}^n \), and \(P(t) \) be a continuous \(n \times n \) matrix function on \((\alpha, \beta) \). Define the set

\[X = \{ x \in C((\alpha, \beta), \mathbb{R}^n) : x(t) \text{ is a solution of } x' = P(t)x \text{ on } (\alpha, \beta) \}. \]

Show that \(X \) is an \(n \)-dimensional vector space over \(\mathbb{R} \).

4. (a) Give the definition of the (Liapunov) stability, instability, and asymptotic stability of an equilibrium point \(x^* \in D \) for the autonomous system \(x' = f(x) \), where \(f \) is a Lipschitz continuous vector field on the domain \(D \subset \mathbb{R}^n \).

(b) For two dimensional system \(u' = v, \quad v' = -u \), prove that the equilibrium point \((0, 0) \) is stable but not asymptotically stable.
5. Use the method of separation of variables to solve the Laplace equation
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \]
inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq H\), with the boundary conditions \(\frac{\partial u}{\partial x}(0, y) = 0, \frac{\partial u}{\partial x}(L, y) = 0, u(x, 0) = 0, \) and \(u(x, H) = f(x) \).

6. (a) Verify that \(v(t, x) = \sum_{n=1}^{\infty} a_n \sin(nx)e^{-(n\pi)^2t} \) is a solution of the heat equation \(\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}, t > 0, x \in (0, 1) \), subject to the boundary condition \(v(0, t) = 0 \) and \(v(1, t) = 0 \), and give the formula for \(a_n \) in terms of the initial function \(v(x, 0) \).

(b) Find a solution of the nonhomogeneous problem
\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad t > 0, x \in (0, 1), \]
\[u(0, t) = 20, \quad u(1, t) = 11, \quad t \geq 0, \]
\[u(x, 0) = f(x), \quad x \in [0, 1]. \]