The Key Player Problems on Graphs

Abstract:
Given a graph G and an integer k, the Key Player Problem asks for the set of k vertices whose removal will maximally disconnect the graph. In this talk I will present a new formulation of the Key Play Problem as a decision problem, which we have shown to be NP-complete. I will also describe a complementary problem which asks for the k vertices best situated to disperse information across a graph, if for example the graph is modelling a social network. Both problems revolve around the identification of “central” vertices in graphs. Finally I will describe our current progress on the case where k is equal to the vertex connectivity of the graph.

Equitably Colourable Combinatorial Designs

Abstract:
For a combinatorial object of order v, the associated spectrum problem is the problem of determining all necessary and sufficient conditions on v so that the object can and will exist. We will investigate the spectrum problem for equitably ℓ-colourable balanced incomplete block designs. Suppose we have a BIBD(v,k,ℓ) in which the points are coloured with ℓ colours c_1,\ldots,c_ℓ. A block B is equitably ℓ-coloured if B has n_i vertices coloured with colour c_i ($i=1,\ldots,\ell$) and $|n_i-n_j|\leq 1$ for any $i,j\in \{1,\ldots,\ell\}$. A design is equitably ℓ-colourable if the points can be coloured with ℓ colours such that every block is ℓ-coloured. Here the associated spectrum problem is the problem of determining conditions on v such that an equitably ℓ-coloured (v,k,ℓ)-BIBD exists for fixed ℓ, k, and λ. This problem was inspired by some recent research on equitably ℓ-colourable m-cycle decompositions of the complete graph.