On 2-factorizations of the complete graph: A mathematical journey through Oberwolfach, Hamilton and Waterloo

Abstract:

In the 1960s, Ringel posed the following problem, known as the Oberwolfach problem. At a conference in Oberwolfach, Germany, attended by n mathematicians, the dining room has round tables of sizes k_1, k_2, \ldots, k_t, where $k_1 + k_2 + \cdots + k_t = n$. Is it possible, over the r nights of the conference, for each person to sit next to each other person exactly once? In other words, given a 2-factor F consisting of cycles of lengths k_1, k_2, \ldots, k_t, does there exist a 2-factorization of the complete graph K_n in which each 2-factor is isomorphic to F?

Several variations of the Oberwolfach problem have since been studied, among the most notable being the Hamilton-Waterloo problem. In this version, the conference has two venues (Hamilton and Waterloo), so we seek to find a 2-factorization of K_n with α factors isomorphic to F_1 and β isomorphic to F_2.

In this talk, we give an overview of these problems, and present some recent results on the Hamilton-Waterloo problem for uniform odd-cycle factors.