Introduction to Topological Dehn Functions

Abstract:

Homological and homotopical dehn functions are different ways of measuring the difficulty of filling a curve in a space X. In particular, the homological dehn function, $F V_{X}^{n+1}$, measures fillings of n-cycles by $(n+1)$-chains, while the homotopical dehn function, δ_{X}^{n}, measures fillings of n-spheres by $(n+1)$-balls.

A major result of Gromov (later in full generality by Alonso, Wang, and Pride) states if X is n-connected and G acts on X geometrically, then the growth rates of $F V_{X}^{n+1}$ and δ_{X}^{n} depend only on G.

I will give basic definitions, discuss some results on how δ_{G}^{n} and $F V_{G}^{n+1}$ relate to each other, and how dehn functions of subgroups relate to that of the original group. This is based on joint work with Eduardo Martinez-Pedroza.