1. Find all the sets of three consecutive integers such that the sum of their squares is 194.

2. Each of the vertices of a rectangle is located on the circle $x^2 + y^2 = 25$. If the perimeter of the rectangle is 28, what is its area?

3. Solve: $x^{\log_{10} x} = \frac{x^3}{100}$.

4. A triangle has sides of length 2, 2, and $\sqrt{6} - \sqrt{2}$. Show that the angles are exactly 75 degrees.

5. At each vertex of a regular hexagon, a sector of a circle of radius one-half of the side of the hexagon is removed. Find the fraction of the hexagon remaining.

6. The graphs of $y = \sqrt{3}x^2$ and $x^2 + y^2 = 4$ intersect at A and B.
 (a) Determine the co-ordinates of A and B.
 (b) Determine the length of the minor arc AB of the circle.

7. A pair of telephone poles d metres apart is supported by two cables which run from the top of each pole to the bottom of the other. The poles are 4 m and 6 m tall. Determine the height above the ground of the point T, where the two cables intersect. What happens to this height as d increases?

8. The equation $x^3 - px^2 + qx - r = 0$ has roots which are consecutive integers. Determine r and q in terms of p.

9. Show that if $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0$, then $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

10. Show that if $abc \neq 0$ and $(x^2 + y^2 + z^2)(a^2 + b^2 + c^2) = (ax + by + cz)^2$, then $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$.

* A grant in support of this activity was received from the Canadian Mathematical Society.

La Société mathématique du Canada a donné un appui financier à cette activité.