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Abstract

A generally agreed upon requirement for correctness ofuwwant executions in Transactional Mem-
ory is that all transactions including the aborted ones mabistent valueOpacityis a recently pro-
posed correctness criterion that satisfies the above eaint. Our first contribution in this paper is
extending the opacity definition for closed nested trarisast Secondly, we define a restricted class,
again for closed nested transactions, that preservesatsnflihis is akin to conflict-serializable class for
traditional database transactions. Our conflict definitsoappropriate for optimistic executions which
are most common in Software Transactional Memory (STM)esyst We show that membership in
the new class can be checked in polynomial time. With opaaityaborted transaction (considering
only the read steps that were executed before aborting) fifegt éhe consistency for the transactions
that are executed subsequently. This property is not désina general and may be harmful for closed
nested transactions in the sense that the abort of a sukatiion may make committing its top-level
transaction impossible. As our third contribution, we pye@ a correctness criterion that defines a class
of schedules where aborted transactions do not affect stensy for other transactions. We define a
conflict-preserving subclass of this class as well. Then iwve the outline of a scheduler that imple-
ments this subclass. Both the class definitions and the cbdéfinition are new for nested transactions.

1 Introduction

In the recent years software transactional memory has gatrsignificant interest as an elegant alternative
for developing concurrent code. Software transactionsiaits of execution in memory which enable con-
current threads to execute seamlessly [7, 16]. Traditiphatks have been used for developing parallel
programs. But programming with locks has many disadvastageh as deadlocks, priority inversion etc.
These disadvantages makes it difficult to build scalablevsoé systems. Importantly, lock based software
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components are difficult to compose i.e. building largetvgafe systems using simpler software compo-
nents [6]. Software transactions address many of the gimomgs of lock based systems. Specifically,
software transactions provide a very promising approackdmposing software components [6].

A (memory) transaction is an unit of code in execution in mgma@ software transactional memory
system (STM) ensures that a transaction appears eitheretuxatomically (even in presence of other
concurrent transactions) or to never have executed atfal tfransaction executes to completion then it is
committedand its effects are visible to other transactions. Othenitiss abortedand none of its effects
are visible to other transactions. Thus the values writiena bve (incomplete) transaction to the memory
are not visible to other transactions. To explain this cphceonsider two transactiorts, to accessing a
data-item, say:, which is initialized to 0. Let the sequence of operations g(z, 5)rs(x)cico Where
c1, co refer to the commit operations of transactiagnsts respectively. Here the value thatreads forz is
0 since at the time when readsr, t; has not yet committed. Thus its write is not yet visiblgto

To achieve this effect, a commonly used approach by softivansactions is optimistic synchronization
(term used in [6]). In this approach, transactions have alllmg where they record the values read and
written in the course of its execution. When the transactiompletes, it validates the contents of its log.
If the log contributes to a consistent view of the memorynttiee transaction updates the memory with the
contents of the log. If not it aborts.

A STM system implements the log described above by havinggtot®l buffer for each data-item and
one local buffer for each transaction accessing that daia. itin the example described above, a global
buffer is created for:. Any write tox by ¢, is performed in the local buffer. When commits, the value
in the local buffer is transferred to the global buffer. Thigs write values can be viewed by others. Hence
until £; commits, its write operations are not visibletto

Composing simple transactions to build a larger transagti@n extremely useful property which forms
the basis of modular programming. In STMs this can be acHigkieough nesting of transactions. A
transaction is called nested if it invokes another transacs a part of its execution. Nested transactions
can broadly be classified aslosedandopen Consider a transactian- which has a sub-transactieg. In
closed nesting when the sub-transactigrcommits its effects are visible tg- (and its siblings) but not to
other transactions. On the other hand in open nesting tketsfbf the transactioty are visible to other
transactions immediately after it commits without waithogits parent transactioty to commit. However
whentp aborts thertg is also aborted. In this paper we focus only on closed nesd@gddctions.

To achieve atomicity, the above discussed notion of meltiplffers extends naturally to closed nested
transactions. When a sub-transaction is created, newrbudfe created for all the data-items it accesses.
The contents of the buffer are merged with its parent’s bsiffehen the sub-transaction commits. Thus if
the sub-transaction writes any value to any data-item, \hlate will not be visible to its parent until the
sub-transaction commits.

When (nested or non-nested) transactions accessing comataitems execute concurrently it is im-
perative that they execute correctly. We illustrate théamobf correctness using an example. Consider the
code shown in Transaction 1 and Transaction 2. Both thessdctions access common shared variables
which are subscripted by. prevYy, curY,, prev.X,, curX,. When the system starts these variable are ini-
tialized with valuesprevY, = prevX, = 0 andcurY, = cur X, = 5. Transaction 1 when invoked stores
the values of variablesurYy, cur X, in prevY,, prevX, respectively and then updates the current values.
Transaction 2 monitors the system by reading these vasiand performs some checks.

When these transactions are executed serially one aftéheanthien both the transactions have a con-
sistent view of the memory. Consider a case where the traiosa@xecute concurrently when the shared
variables have the valugsevY, = prevX, = 5, curYy = curX, = 10 andéY = 06X = 5. Let the



Transaction 1 System Update Transaction
SystemUpdatéoY, 6 X)

1: prevYy < curY,

2: curYy < curYy, +0Y

3: prevXy < curX,

4 curXy < curXy, + 60X

Transaction 2 System Monitor Transaction
SystemMonitor()

s5qCurY <« curYy, x cur,
sqPrevY < prevYy x prevY,
5qCurX « curXy x curX,
sqPrevX < prevXy x prevX,
if (sqCurX >=100) then
curRatio + (sqCurY — sqPrevY)/(sqCurX — sqPrevX)
if (curRatio < 0.5) then
SystemMaintenance()
end if
end if

=

[y
e

sequence of the execution from this point be: Transactiomansaction2.2 Transaction2.3 Transactionl.1
Transactionl.2 Transactionl.3 Transactionl.4 cl Traies@c4 Transaction2.5 Transaction2.6. Here the
notation Transactionl.2 indicates that Transaction 1 kesuged step number 2. In this execution Transac-
tion 1 executed in parallel when Transaction 2 was execwimjcommitted its values. When Transaction
2 executed step 3, its variableCur X has the value 100. When Transaction 2 executes step 4 (aftes-T
action 1 has executed and committed its values), its variadPrev X is also 100. This is because of the
(committed) write by Transaction 1. Then it will executepste The ‘if’ statement will succeed because
sqCurX = 100 and go to step 6. HereyCurX andsqPrevX both have the same values. Hence the
division in step 6 will cause a divide by zero error. Here tbads of the variablesurYy, cur X, prevYy,

by Transaction 2 when combined with the reachoév X, do not form a ‘consistent’ view as it has been
invalidated by the committed writes of Transaction1. Thhis, is not a ‘correct’ execution.

A commonly accepted correctness requirement for concumegcutions in STM systems is that all
transactions including aborted ones read consistent sialthee values resulting from any serial execution of
transactions are assumed to be consistent. Then, for eadattion, in a concurrent execution, there should
exist a serial execution of some of the transactions givieg to the values read by that transaction. Thus
the execution mentioned in the above example is not corireoe & is not equivalent to any serial execution
of Transaction 1 and Transaction 2. Guerraoui and Kapalkadptured this requirement apacity An
implementation of opacity for non-nested transactionshegs given in [9].

The correctness criterion used in traditional databasesrializability[14, 17]. According to serial-
izability an interleaving execution of committed transaes is correct if it is equivalent to some serial
execution of the same set of transactions. But serialiipalsibncerns itself only with the events of com-
mitted transactions. Any execution that satisfies sedhllity ensures that all committed transactions read
consistent values. It does not require that the abortegdrions read consistent values. As pointed out
in [5] this is acceptable in the context of databases whieheaecuted in highly controlled environments.



But in the context of STMs, it is imperative that even the apiens of aborted transactions see consistent
values. Otherwise it could have several undesirable sffeath as ‘divide by zero’ error, crash failure or
even infinite loops [5, 9]. In the above example suppose &&im 2 was aborted at step 8 (due to some
other system related issue). In spite of that, it is not aed@e for Transaction 2 to execute the read of step
5 (asitis aninvalid read) and will cause the ‘divide-bye?asrror.

On the other hand, the recent understanding (Doherty et]alrftbs et al [8]) is that opacity is too
strong a correctness criterion for STMs. Weaker notioneHaeen proposed: (i) The requirement of a
single equivalent serial schedule is replaced by allowiogsibly different equivalent serial schedules for
committed transactions and for each aborted transactiahtreese schedules need not be compatible; and
(i) the effects, namely, the read steps, of aborted trdimses should not affect the consistency of the
transactions executed subsequently. The first point refireesonsistency notion for aborted transactions.
(All the proposals insist on a single equivalent serial dethe consisting of all committed transactions.) The
second point is a desirable property for transactions ireggrand a critical point for nested transactions,
where the effects of an aborted sub-transaction may ptobdohmitting the entire top-level transaction.
The above proposals in the literature have been made fonested transactions.

In this paper, we extend the opacity definition for closedettransactions. We define two notions and
corresponding classes of schedul€tosed Nested Opacity (CN@pdAbort-Shielded Consistency (ASC)
In the first notion, read steps of aborted (sub-)transastare included as in Guerraoui and Kapalka [5, 9].
In the second, they are discarded. These extensions tutn betnontrivial due to the fact that an aborted
sub-transaction may have some committed descendentsraitarlyi some committed ancestors.

Checking opacity, like general serializability (for insta,view-serializability), cannot be done effi-
ciently. Very much like restricted classes of serializépidllowing polynomial membership test, and facil-
itating online scheduling, restricted classes of opadty also be defined. We define such classes along the
lines of conflict-serializability for database transastipConflict-Preserving Closed Nested Opacity (CP-
CNO) and Conflict-Preserving Abort-Shielded Consistency (CP-A&Lir conflict notion is tailored for
optimistic execution of the sub-transactions and not jesiveen any two conflicting operations. We give
an algorithm for checking the membership in CP-CNO (which loa easily modified for CP-ASC) and a
scheduler for CP-ASC (which can be easily modified for CP-GNBDth use serialization graphs similar to
those in [15].

We note that all online schedulers (implementing 2PL, tia®p, optimistic approaches, etc.) for
database transactions allow only subclasses of conflihzable schedules. We believe similarly that all
STM schedulers can only allow subclasses of conflict-pvasgischedules satisfying opacity or any of its
variants. Such schedulers are likely to use mechanismdesinyan serialization graphs as in the database
area. An example is the scheduler described by Imbs and R@na

In the context of nested transactions there have been matgrimentations of nested transactions in the
past few years [2, 13, 12, 1, 11, 10]. In [5], the authors dis@xtending opacity to nested transactions. But
none of them provide a precise correctness criteria foedesiftware transactional memory system that can
be efficiently verified. To summarize, in this paper we présen classes of correctness criteria for closed
nested transactions and describe subsets of these claaseart be efficiently verified.

Roadmap: In Section 2, we describe our model and backgrdar®kction 3, we define CNO, CP-CNO
and give an algorithm for polynomial membership test. Int®ac4, we present ASC and CP-ASC. In
Section 5 we discuss about some variations to the definil@taissed and Section 6 concludes this paper.



2 Background and System Model

A transaction is a piece of code in execution. In the courses efkecution a nested transaction may perform
read/write operations on memory and invoke other tramsast{also referred to as sub-transactions). We
refer to these asperationsof the transaction. A sub-transaction (of a transactionjlccdurther invoke
other transactions as a part of its execution. Thus a coniguitévolving nested transactions constitutes
a computation tree The nodes of this tree are read and write operations, andactions. The operations
of a transaction can be viewed as its children. The opemtine classified asimple-memory operations
andtransaction operationsr justtransactions Simple-memory operations are read or write operations on
memory and have no children. Thus in the computation treth@lleaves are simple-memory operations.

In addition to memory operations, a transaction also coatacommitor abort operation. If a transac-
tion t x executes successfully to completion, it terminates witbramit operatiorcy. Otherwise it aborts
with the operationux. Abort and commit operations are callegfminal operations By default, all the
simple-memory operations always commit.

Consider a closed-nested transactipnWhent¢p accesses a data-item a local buffer is created for it.
For instance if it reads data-itemand writes data-itemg andz then the STM system creates three local
buffers. These buffers are initialized with value. All the writes bytp are in its local buffers. Whetp
commits the contents of its local buffers are merged withothféers of its parent. Thus any peer transaction
of tp can read the values written by only after it commits. Ift p aborts then its local write values are not
merged with its parent’s buffers. Thus, none of the writearofiborted transaction ever become visible to
other transactions.

We assume that there exists a hypothetical root transaatitthve computation tree, denotedigswhich
invokes all the other transactions. On system initial@ative assume that there exists a child transaction of
to, tinit, Which initializes all the buffers ofy with non-L values. Similarly we also assume that there exists
a child transaction ofy, ¢ y;,,, which reads the contents &fs buffers when the computation terminates.

This discussion explains how write operations are perfdrimetransactions. Now we will informally
describe how read operations are performed. We assumeothattfansaction to read a data-item, say
(unlike write) it has access te data buffers of all its ancestors apart from its own. But iesloot have
access to its children’s buffers. To reada nested transactiany first reads its locak buffer. If the value
read from its buffer isL then it reads from its parents buffer. If that is alsal, it then reads the buffer of
the parent of the parent and so on. It readsuthoeiffers in this way until it reads a nah-value. Sinceg'’s
buffers have been initialized will eventually read a non- value. We will revisit read operations a few
subsections later where we formally describe it.

2.1 Schedules

All transactions and simple-memory operations are nodélseofomputation tree. We denote themmag
An id is concatenation of digits and uniquely identifies a tratisatoperation. When we are specifically
referring to a transaction we denote ittas For a transaction withd ast x havingk children, we name the
child operations as x1, nx2, ....., n.xx. If a child (for examplenx1) is a simple-memory operation reading
or writing data-itemy then we denote it asy; (y) or wxi(y) and also asmx1(y).

A sample computation tree is shown here. We show each trémsdollowed by all its operations. In
Figure 1 we show the computation tree for this schedule. die@ted earlier we denote the root transaction
asty:



ty

tinit

ros(y)  Tos2(2)

wo13(y)

Co21

wo212(Yy) To221 () woz22(2)

Figure 1: Computation tree for Example 1

Example 1 to : {tinit, to1, to2, tos, tfin }s

tor : {to11, smo12 = wo12(2), smo13 = wo13(y), co1 }»

o1 : {3m0111 = 7‘0111(5'3),87710112 = w0112(y),6011},

to2 : {to21, to22; co2},

lo21 : {Smozn = 7‘0211(2),87710212 = w0212(y)a6021}a

toga : {smo221 = T0221 (), SMo222 = Wo222(2), @022},

toz : {smo31 = r031(y), smo3z2 = T032(2), SMo33 = wo33(2), co3}

A schedulés a real time execution of the leaves of a computation trdee @vents of a schedule are
memory operations and terminal operations of transactiotise computation. The events of a schedsile
are totally ordered. A schedule is represented by the tlptes, nodes, ord), whereevts is the set of all
events in the schedulepdes is the set of all the nodes (transactions and simple-meneyations) present
in the computation andrd is a function that totally orders all the events. In the cent# a schedule we
denote an event of a scheduleecasThus all the leaf nodes in the tree are referred to as eveltiig icontext
of schedules. A schedule for the computation tree in Exarhglen be represented as:

Example 2
S1 :ro111(z)wori2(y)corrworz (2)rozin (2)woe212 (y) co21 woi3 (¥) co1ro221 () woez (2) ap2acozro31 () rose (2)
w033(2)003

For a closed nested transaction, all its write operatiomsvigible to other transactions only after it
commits. Herewga12(y) occurs beforavpis(y). Whenty; commits, it writeswgs(y) in tg’s buffer. But
to2 commits afterty; commits. Whenty, commits it overwritesy's y buffer with wgg12(y). Thus when
transactionys performs the read operations; (v), it reads the value written byg212(y) and not the one
written by w13 (y) even thoughuys(y) occurs aftervgar2(y).

To model these effects clearly, we augment a schedule with @xite operations. Prior to the commit
event of a transaction, a few write operations are addecetschedule to represent the merging of its local
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buffers with its parent’s buffers. We call these writescasnmit-writeoperations. To every data buffer a
committed transaction writes to (i.e. values written by #dcbr a descendent that has not aborted), there
exists a commit-write operation. This write is the latedtigaon the data buffer. For example consider a
transaction x consisting of operations x1 (y)wx2(z)wxs(y) which it executes in this order and commits.
Then in the schedule there is a commit-write operation,fand a commit-write fok.

In the above exampley writes to data-itemy twice. So its local data-buffer will hold the most recently
written value. In this case the buffer holds the writeuofs(y). The commit-write operation fog writes
the latest write operation i.evxs(y). We denote the commit-write foy asw$3(y) and forz asw2(2).
The superscript provides the information about which chitde operation this commit-write corresponds
to. Since the local write buffers of an aborted transacti@nnmt merged with its parent’s buffer there are
no commit-write operations corresponding to an abortedstretion. Using this notation we re-write the
schedule in Example 2 as follows:

Example 3
52 : ro111 (@) wor12 (¥) w2 (y) cor1wor2(2) o211 (2)wo212 (¥) w2 (y) coo1 wors (y)wii2 (2)wit (y) co1mo221 (7)
w22 (2)ao22wist (y)cozrost (y)ros2 (2)woss (2)wis® (2)cos

Originally in the computation tree only the leaf nodes cowlite. With this augmentation of transac-
tions even non-leaf nodes corresponding to committedditgs write with commit-write operations. For
sake of brevity, we do not represent commit-writes in the potation tree. We assume that all the schedules
we deal with are augmented with commit-writes.

It must be observed that a transaction’s commit-write djmravrites in its parent’s buffers. For instance
toe1’s commit-writew(3! (y) writes intgo’s y buffer (and not intge1's buffer). We denote the set of commit-
writes of a committed transaction esmmit-set As opposed to commit-write we denote a simple memory
write operation as aimple-memory write

In our model a schedule has the complete information abewtdmputation tree. Thus given a schedule
we can obtain the entire computation tree from the subsooifthe events in it. Now consider two schedules
S1 andS2. If the sets of events in these schedules are the same theortiutation trees represented by
these schedules are the same. This is true irrespective afrttering of the events in the schedules. The
following property states it,

Property 1 Consider two schedule$l and S2. If the sets of events of the schedules are the same then the
computation trees represented by the schedules are alssathe and vice-versa. Formally,
(51,52 : (Sl.evts = S2.evts) < (the computation trees ¢f1 and S2 are the samg

Collectively we refer to simple-memory operations and comwmite operations as memory operations.
Since simple-memory operations are committed by defaaltdmmit-write notion can be extended to any
tree node. Thus for any nodey in a computation tree represented by a schedulee define

nx’'s commit-set ny is a committed transaction

) nil nx 1S an aborted transaction
S.cwrite(nx) = ) ) ]
nx nx IS a simple-memory write
nil nx is a read operation

With the introduction of commit-write operations we exteheé definition of an operation, denoted as
ox, 1o represent either a transaction or a commit-write opgeradr a simple-memory operation. When
we refer to a node on the computation tree, denoted asit is either a transaction or a simple-memory
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operation. Thus a node is also an operation. But an operegfenring to a commit-write operation of a
transaction is not a node since it is not part of the compriatiee. We denote a memory operation (either
commit-write or simple-memory operation) asy (y) or justmx if the data-item is not important to the
context.

We define two kinds of transactions: nested and non-nestethnAested transaction has only simple-
memory operations as its children. A nested transactiorotiess transactions (either nested or non-nested)
and simple-memory operations as its children.

2.2 Function Definitions

In this section we describe the functions used for desdaibur algorithm. All the functions pertain to the
computation tree represented by a schedule
We define a functiomolder for an operation as:

tx ox is acommit-write belonging toy,
S.holder(ox) = )
ox ox IS anode of the tree

The S.holder(ox) is same a®x when it is a transaction or a simple-memory operation. Fgran
its holder maps it onto a node in the computation tree andulilbe denoted by x. In S2 of Example 3,
S2.holder(w)3i?) is too1 .

For any operatiox, we defineS.level(ox ) as the distance df.holder(ox ) in the tree from the root.
From this definitiont, is at level 0. The level of a transaction and all its committevoperations are the
same. For instance in Example.level (wi31?) = S2.level(toa1) = 2.

For a given tree node x (a transaction or a simple-memory operation) in the conjautdaree repre-
sented by the schedule, we define:S.parent(ny) as the parent ofix on the tree,S.children(nx) as
children ofnx on the treeS.desc(nx ) as the set of descendantsrof on the tree and.ansc(nx) as the
set of ancestors of x on the tree.

These functions can be extended to any operatjp(including commit-write operation of transactions)
by defining them forS.holder(ox ) over the tree. Thus by this extension the parent of a commiiewn x,
of a transactiortx is tx’'s parent in the tree. Similarlynx’s children aretx’s children. For instance in
S2 of Example 3,52.parent(wiai?) = to2 andS2.children(wisi?) = {ro211(2), woa12(y)}. But it must
be noted thatS2.parent(rog11(2)) is to21 and notwdai?. Similarly these arguments can be extended to
descendants and ancestors.

Consider two operationsy, oy, in the computation tree represented by a scheduleWe define
S.lca(ox, oy) as the least common ancestorholder(ox ) andS.holder(oy ) in the computation tree of
S.

Next we definedSet function to be associated with every operation in the scleesiu

Definition 1 (dSet)

ox U ( U S.dSet(ny)) U S.cwrite(ox) ox is atransaction
ny €S.children(ox)
S.dSet(ox) = o ox is a simple-memory operation
S.dSet(S.holder(ox)) ox is a commit-write



Thus for a transactionx this function comprises of itself, its descendents, its witrwrites and
all its descendent’s commit-writes. By this definition we geat for any operationx, S.dSet(ox) =
S.dSet(S.holder(ox)). In Example 3,52.dSet(tys) = S2.dSet(wis (y)) = {toz, T0o211(2), wo212(y),

w2 (y), toz1, o221 (%), wo22 (2), toaz, wia' (y) }

We have the following properties which follow from the defiiom of dSet:

Property 2 In the computation tree represented by a schedyléor any operatiorox belonging tooy’s
dSet, the level afx is greater than or equal toy’s level. Formally,
(S : (ox € S.dSet(oy)) = (S.level(ox) = S.level(oy))

Property 3 In the computation tree represented by a schedylé an operationox belongs tooy’'s dSet
andoy, oy are at the same level then the holdersgf, oy are the same. Formally,
(S : (ox € S.dSet(oy)) A (S.level(ox) = S.level(oy)) = (S.holder(ox) = S.holder(oy)))

Property 4 In the computation tree represented by a schedylé an operationox belongs tooy’s dSet
and its level is greater thany 's level then the holder afy is a descendent of-. Formally,
(S : (ox € S.dSet(oy)) A (S.level(ox) > S.level(oy)) = (S.holder(ox) € S.desc(oy)))

Now we define a peer function on an operatignin a schedules:
S.peers(ox) = {oy|(S.holder(ox) # S.holder(oy)) A (S.parent(ox) = S.parent(oy))}

By this definition, two operations are ‘peers’ of each otHahéy have the same parent but are not
commit-write operations of the same transaction. Thusresaetion and all the elements of its commit-set
are not peers of each other even though they all have the sametplt is useful to view a transaction and
all the elements of its commit-set as a single fused supee imothe tree. From this definition we get that
(ox € S.peers(oy)) = (oy € S.peers(ox)) but(ox ¢ S.peers(ox)). Consider two memory operations
mx(z), my (z) operating on the same data-item. If they are peers, havingaime parent say, then they
have access to the same data buifeelonging tof p.

Next we define a very useful functiompt Vi s on two operations® x, oy in a scheduleS, denoted as
S.optVis(oy,ox). We will explain the significance of this function througtetbourse of this document.

Definition 2 (optVis)

true oy € (S.peers(ox) U S.peers(S.ansc(ox)))

S-optVis(oy, ox) {false otherwise

One can see that optVis function is not symmetrical. Thaf.igytVis(oy, ox ) does not imply
S.optVis(ox,oy). If S.optVis(oy,ox) is true then we say thaty is optVis toox in S. It must also
be noted that by the definition ibf € S.dSet(oy)) then S.optVis(oy,ox) is false. As a result for
any commit-write of a transactioty-, saywy, S.optVis(wy,ty) is false. It can also be seen that if
S.optVis(oy,ox) then theS.holder(oy ) is not an ancestor afy.

Figure 2 illustrates optVis. Here the dashed line reprastrg set of ancestors of x. The operations
ma, mp, mc are peers ofn x’s ancestors. Hence they all are optVisio .

In S2 of Example 3, we have thﬂQ.optVz‘s(tm, tog) = S2.0ptViS(t02, tog) = SQ.OptViS(tog, t01)
= true becausey, tgs, to3 are peers of each other. Now looking at some subtle examples:
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Figure 2: This figures illustrates optVis. The dashed line reresents the set of ancestors ofi x.

S2.0ptVis(wii3 (y), w33 (2)) is true because)i? (v), wi33(z) are peersS2.optVis(wi?(z), ro11(2)) is

true asw)i?(z) is a peer otz which is an ancestor ofy11(2). Similarly S2.0ptVis(to1, toe2) is true. But
S2.0ptVis(roz11(2), wdi?(2)) and S2.0ptVis(toza, to1) are false. AlsaS2.optVis(wdi? (y), wor12(y)) is

false asvg112(y) isinto;’s dSet andvdi? (y) is a commit-write ofy;. Similarly S2.optVis(wis? (2), ros32(2))
is false. Now we define some properties and lemmas aboutsptVi

Property 5 In a scheduleS if a memory operation (commit-write/simple-memory opergtmy- is optVis
to another memory operation x thenmx’s holder is a descendent of parentraf,. Formally
(S : S.optVis(my,mx) = (S.holder(mx) € S.desc(S.parent(my))))

Property 6 Consider two write operationsy,wz and a read operationry in a scheduleS. If both
wy, wyz are optVis torx and are at the same level then-, wz have the same parent. Formally,
(S.optVis(wy,rx) A S.optVis(wz,rx) A (S.level(wy) = S.level(wz)) = (S.parent(wy) =
S.parent(wz))

Lemma 7 Consider two schedulesl and .S2 such that both of them have the same set of events. Suppose
for two event®y andoy, oy is optVis toox in S1. Thenoy is optVis toox in S2 as well. Formally,
(S1,52 : {ox,oy} € Sl.evts : (Sl.evts = S2.evts) A\ (Sl.optVis(oy,o0x)) = (S2.0ptVis(oy,0x)))

Proof: Since the events o1 and .S2 are the same, from Property 1, we get that the computatiess oé
S1 andS2 are the same. 181, oy is optVis toox. This implies thaby is either a peer obx or a peer of
an ancestor obx in the computation tree @f1. Since the computation tree S2 is the same as that 6fl,
oy Is either a peer ofx or a peer of an ancestor of in the computation tree &§2 as well. Hencey is
optVis toox in S2 also. Thus we havs2.optVis(oy,o0x). O

Lemma 8 Consider a schedul§ with two nodes:p, ng and two memory operations. x , my such that
mx isinnp’s dSet;my isinng’'s dSetng is optVis tom x andmy is not innp’s dSet. Them is optVis
to np. Formally,

((mx € S.dSet(np)) A (my € S.dSet(ng)) A (S.optVis(ng,mx)) A (my ¢ S.dSet(np)) =
(S.optVis(ng,np)))
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Proof: Let the holder ofmx benx. We prove this lemma using levels. Lit, lg,lx be the levels of
np,ng,nx respectively. Botmx andmy are at the same level. Sineg) is optVis tomy, lg < lx. Let
np be the parent of and its level bég. Sinceng is optVis tom x, from Property 5 we get thatz is an
ancestor ofvy. Thus we get thalg = [ — 1 and/p < [x. Now we have two cases based on the levels:

e [p < lg: Herenp is closer to the root thang. This implies thaip < (Ig — 1) = Ip. Sincemx is
innp'sdSetandp < lg < lx, from Property 4 we get thatp is an ancestor ofvx. Thus bothnp
andn p are ancestors ofx. By comparing the levels, we get thap is same as z or an ancestor of
np. In either caseug is in np’'s dSet. This implies thatny is also innp’s dSet. But we are given
thatmy is not innp’s dSet. Hence this case is not possible.

e [p > lg: This case implies thadtp > [g. Sincemx is in np’'s dSet, from Property 2 we get that
Ilp < lx. From Property 3 and Property 4, we get that is either ancestor ofn x or the holder
of mx. In either case we get thatg is an ancestor ofp. Sinceng is a child ofng (which is
different fromnp), we get that is a peer ofp or a peer of an ancestor of> which implies that
S.optVis(ng,np).

Lemma 9 The optVis relationship is transitive. Consider a schedsil@ith three nodes:p, ng, ng such
thatnp is optVis tong, ng is optVis tong. Thennp is optVis tong. Formally,
((S.optVis(np,ng)) A (S.optVis(ng,nr)) = (S.optVis(np,nr)))

Proof: This can be proved from the definition of optVis. O

2.3 Writes for Read Operations

Given a schedule it is necessary to precisely define for ezaghaperation a corresponding write operation.
The write operation is such that if it stores a vatuen a data buffer, then the read operation will retrieve
this value when invoked. For a read operatignon a data iten in a schedules, we call such a write as
thelastWrite! and denote it a$.lastWrite(rx(z)).

Traditionally in single version databases, in a given salethe lastWrite of a read operatiory on
data-itemz is the most recent previous write operationzan the schedule. Butin case of nested transactions
for STMs, where there are multiple buffers for a data-itdme, lastWrite could potentially be the most recent
previous write in any one of these buffers.

As mentioned earlier when a new sub-transaction is invokga parent transaction), the sub-transaction
creates a separate set of buffers for each data-item itsExe®n creation these buffers are initialized with
L. Thus for the readx (z) we want its lastWritevy (z) to satisfy the following properties:

1. The lastWritewy should occur prior to the read operatiog in the schedule.

2. The lastWritavy should be a commit-write belonging to a committed transaadr a simple-memory
operation. Since the read operation can access dlaga buffers of all its ancestors, the commit-write
on z should be a peer ofx(z) or a peer of an ancestor ok (z), i.e., S.optVis(wy,rx) should be
true.

This term is inspired from [12]
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3. The read operationy (z) accesses buffers starting from that of its own transaction. It theoesses
its ancestor's buffer in the decreasing order of level. It reads from the brgfer which has a non-
value in it. Thus the lastWritevy is such that the difference between its level ards level is the
smallest.

4. If there are multiple writes satisfying the above comutis then among these writes the lastWrite
is the closest t@ x in the schedules.

Now we will formally describe the notion of lastWrite. We «ider the following schedule to describe
our definitions. The computation tree for this schedule Bigure 3.

Example 4

Computation Tree:

to : {tinit: to1, to2, to3, tfin }s

to1 : {smo11 = ro11(x), smoi2 = wo12(y), co1 }»

to2 : {to21, smo2e = wo22 (), to23, to2a, Co2 }s

lo21 : {Smozn = 7‘0211(2), SMop212 = w0212(90), $Mp213 = w0213(y), 6021},
to23 : {to231, to232, 023},

o231 : {Sm02311 = 7“02311(5'3), 52312 = w02312(y), 00231},

to232  {SMo2321 = 702321 (), STM02322 = W02322(T), 502323 = W02323(Y), C0232 },
to24 = {8Mo241 = T0241(), SMo242 = T0242(Y), 5M0243 = W0243(2), Co24 },
toz : {smo31 = r031(y), smo32 = T032(2), sMo3s = woz3(d), co3},

Schedule:

S3:ron (5'3)7‘0211 (Z)wozlz (w)w022 (5'3)7"02311 (x)wozls (y)wS%P (x)wgg%g (y)0021w012(y)w8%2 (y)c01w02312 (y)
w8§§%2 (y)co231702321 (Y)r0241 (@) wo2322 () 0242 (¥) 7031 (¥ ) Wo2323 (Z/)wg%g%z (z )wgggg?’ (y)co232m032(2) @023

wo243(2) w3 (2)corawds’ (x) w3 (y)whs* (2)corwoss (d)ws® (d)cos

It must be noted that in the schedu8 transactiontyes is aborted. But both its child transactions
to231, tooz2 are committed.

For two memory operations in a schedule we define two kindsistlices. We define schDist as
S.schDist(mx,my) = |S.ord(mx) — S.ord(my)|. Next we define levDist a$.levDist(myx,my) =
|level(mx ) — level(my)|. For a memory operatiom x (y) in S, we define the following sets:
S.prevW (mx (y)) = {wy (v)|(wy (y) € S.evts) A (S.ord(wy (y)) < S.ord(mx(y)))}

As the name suggests the set prevW consists of al thgtes that happen before x (y) in S irrespective

of whether they are simple write or commit-write operations

SprevVisW (mx (y)) = {wy (y)|(wy (y) € SprevW (mx(y))) A (S.optVis(wy (y), mx ()}

This set consists of all thewrites that occur beforen x (y) and are optVis ton x (y). Since the transaction
tinie 1S @ child oftg, t;,;; IS optVis to every other operation in the computation. Hetheeset prevVisW of
every memory operation will contain a write by,;;. As a result, the prevVisW of every memory operation
has at least one element. For instance in the schetBitaentioned in Example 4,

S3.prevVisW (roga1 () = {Winit(x), wisi2(z), wosz (z)}

S3.prevVisW (ro2ae(y)) = {winit(y), w1 (v), wi*(y) }

S3.prevVisW (12321 (y)) = {winit(v), wiat> (y), w2 (y), wissi2 (y), }

Now we define a set having all the writes that occur before a ongroperation, are optVis to it and are
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closest to it in terms of level.

S.prevCloseSet(mx(y)) = {wy (y)|(wy (y) € S.prevVisW (rx(y))) A (S.levDist(wy (y), mx(y))
is smallest}

For instance, for the writes of schedui8 in Example 4 mentioned above,
S3.prevCloseSet(rogq1(z)) = {wg%%Q(ZC),U}OQQ(SC)}
S3.prevCloseSet(rogaz(y)) = {wgg%g(y)}

S3.prevCloseSet(rozsa (y)) = {wissi?(y)}

Having defined these sets, we define the lastWrite for a reathtipn in a schedule as the closest write
operation from the prevCloseSet set. Formally,

S.lastWrite(mx(y)) = {wy (y)|(wy (y) € S.prevCloseSet(mx(y)))A
(S.schDist(mx (y), wy (y))is minimum)}

Since the set prevVisW has at least one element, lastWritevsr nil. In the worst case a read operation

will read the values written by;,.;;. The lastWrites for all the reads $3 of Example 4 are as follows:
02312

{ro11(x) : Winit(x), 70211 (2)  Winit (2), 02311 (%) : wo2 (), 702321 (y) : WH331° (), ro2a1 () : wha1?(2),
ro2a2(y)  wis1” (), 031 (Y) = Wi (), Tos2(2) : Winit(2)}

An important requirement of a STM is that no transaction sdaoim an aborted transaction. Intuitively
this implies that the lastWrite of no read operation belottgan aborted transaction’s dSet. Consider the
readroasz; (). Its lastWrite iswdss:2 (y) which belongs tdg,s's dSet. Transactionyes is aborted. In this
case it might seem that the reags,; (v) is reading from an aborted transaction. 312(y) actually
belongs toty231's dSet which is a committed transaction. Furthg@sa (y) also belongs tdges. Thus the
properties that we want of aborted transactions have not Wietated. We have the following property and

lemma which formalizes this notion:

Property 10 Consider a schedul® which has a read x. Let the lastWrite of x bewy . Then the holder
of wy can not be an aborted transaction. Formally,
(S :rx € S.evts : (wy = S.lastWrite(rx)) = (S.holder(wy ) is not aborted)

Lemma 11 Consider a schedul§ which has a read x. Let the lastWrite of x bewy . If an ancestor of
wy, Sayt 4, is aborted themry isint4’s dSet. Formally,

(S :rx € S.evts,ty € Sinodes : (wy = S.lastWrite(rx)) A (ta € S.ansc(wy)) A (t4 is aborted =
(rx € S.dSet(ty)))

Proof: Let the parent ofwy betp. From Property 5, we get thap is an ancestor ofx. Hence, any
ancestor ofvy is an ancestor afx. This implies that 4 is an ancestor afy. Thus,rx is in the dSet of 4.
O

Informally this lemma implies that no transaction outsiseadorted transaction reads from it. Now
consider the read operatiog42(y) in S3 of Example 4. Its lastWrite ig{312 (y). Butin S3 there is a write
w2 (y) which is optVis torgsa(y) and occurs before it. Moreoveri? is closer torgese(y) in schDist
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thanwizi3(y) i.e. S3.schDist(ro2a2(y), w3 (y)) > S3.schDist(rogas(y), wdi?(y)). So intuitively it
might seem thatv}?(y) should be the lastWrite. Bub{3i?(y) is closer torg(y) in terms of level
thanw)}? (condition 3 of the properties required by lastWrite) i.63.levDist(ro2(y), wisi®(y)) <
S3.levDist(roa2(y), woi(y)). Hencewdsi3(y) is the lastWrite. The following two properties describe
this notion formally,

Property 12 Consider a schedul8 with memory operations ;, wy , rx such thatw, occurs prior towy

in S, wy is optVis torx andwy is the lastWrite ofry. Thenwy's level should be less than or equal to
wy's level. Formally,

(S {wz,wy,rx} € S.evts: (S.ord(wz) < S.ord(rx))A\S.optVis(wz,rx )\ (wy = S.lastWrite(rx))
= (S.level(wz) < S.level(wy)))

Property 13 Consider a schedul§ with memory operations z, wy , rx such thatwy's level is same as
wy's level,wz occurs prior tory in S, wy is optVis toryx andwy is the lastWrite of-x. Thenw also
occurs prior towy in S. Formally,

(S :{wz,wy,rx} € S.evts: (S.level(wz) = S.level(wy)) A (S.ord(wz) < S.ord(rx))

N S.optVis(wz,rx) A (wy = SlastWrite(rx)) = (S.ord(wz) < S.ord(wy) < S.ord(rx))

We would like to make a note about the definition of optVis. €ldar a read operationy (z) and a
committed transactioty in a schedules. Letryx be inty’s dSet. Then by our convention all the commit-
writes ofty occur afterry has executed in th8. Thus no commit-write ofy can be the lastWrite ofy.
Due to this property we defined optVis such that any wiiteis not optVis tor x if rx is contained irty'’s
dSet. Formally,

(S : {rx,wy,ty} € S.evts : (rx € S.dSet(ty)) A (wy € ty'scommit-se} = (S.optVis(wy,rx) =
false))

For a noden p with a read operationy in its dSet, the read is said to be external-readof n p if its
lastWrite is not innp’s dSet. For instanceyqy () is an external-read dfy4 since its lastWrite)31% ()
iS not intpe4’'s dSet. The reaatyas2; (y) is not an external-read of the transacti@ps since its lastWrite
w3312 (y) belongs tapes’s dSet. From this definition we get that every read operdti@m external-read of
itself. Thus,rp241(x) is an external-read of itself. It can be seen that a nestedaction interacts with its
peers through external-reads and commit-writes. Thussieddransaction can be treated as a non-nested
transaction consisting only of its external-reads and carmites. The external-reads and commit-writes
of a transaction constitute iextOpsSet

A schedule is calledvell-formedif it satisfies: (1) Validity of Transaction limits: After adnsaction
executes a terminal operation no operation (memory or tenbelonging to it can execute; and (2) Validity
of Read Operations: Every read operation reads the valutewby its lastWrite operation.

We assume that all the schedules we deal with are well-formed

2.4 Serial Schedules for Closed Nested Transactions

In this section we talk about serial schedules in the cortErested transactions.

Schedule Partial Order: A schedule totally orders all the events of a transactionrthieu it partially
orders all the transactions and simple-memory operatiBns.a schedule&' and a transactiohy in it, we

defineS.tx.first as the first operation dfy that executes according # Similarly we defineS.t x.last
as the last operation dfy (i.e., a terminal operation) to execute accordingSto For a simple-memory
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operation,S.mx.first = S.mx.last. With these definitions we can define a partial order on alhtbaes
in the computation tree represented by the schedulg:<g ny) = (S.nx.last < S.ny. first)

We call this order as thechedule-partial-orderlt must be noted that all the memory operations having
the same parent are totally ordered.

Serial Schedules: For the case of non-nested transactions a serial schedalesdhedule in which all
the transactions execute serially (as the name suggestg)uvany interleaving. Serial schedules are very
useful because their executions are easy to verify singe thao interleaving. For a closed nested STM
system we define a serial schedule as follows:

Definition 3 A schedules'S is called serial if for every transactioty in S.S, the children (both transactions
and simple-memory operations) $f are totally ordered. Formally,
(Vtx € SS.nodes : {ny,nz} C S.children(tx) : (ny <gs nz)V (nz <gs ny))

From the definition of a serial schedule we get the followingperty:

Property 14 Consider two peer nodeg,x,ny in a serial schedules'S. Letmp be a memory operation
belonging ton x's dSet andng be a memory operation belonging #9-'s dSet. Ifmg occurs beforeng
in S5, then all the memory operations iny’'s dSet occur before all the memory operations:ofs dSet.
Formally,

({nx,ny} € SSnodes : (mp € SS.dSet(nx)) N (mg € SS.dSet(ny)) : (SS.parent(nx) =
SS.parent(ny))A(SS is seria\(SS.ord(mg) < SS.ord(mg)) = (Vmp,Ymg : (mp € SS.dSet(nx))A
(mg € SS.dSet(ny)) : (SS.ord(mp) < SS.ord(mq))

3 Conflict Preserving Closed Nested Opacity

In this section, we (i) define opacity for closed nested tatisns, represented by a class of schedGN®©,
(i) present a new conflict notioaptConffor closed nested transactions (iii) defi@®-CNQ a subclass of
CNO based on optConf and then (iv) present an algorithm fafyueg the membership of this class in
polynomial time.

3.1 Closed Nested Opacity

A STM system allows interleaving between transactions ficieftly utilize the system resources. But the
STM system should also ensure that the interleaving tréinsacexecute in correct manner. In the context of
traditional databases the correctness criterion for tleewion of concurrent transactionsssrializability
[18]. Serializability ensures that the execution of all twmmitted transactions corresponds to a serial
execution. But serializability does not specify the comess of aborted transactions. In STM systems
where transactions execute in memory it is imperative thdtamsactions including aborted transactions
execute correctly. Incorrect execution of aborted tratisas could result in the STM system entering
into an inconsistent state. This could result in many ersoich as crash failures, division-by-zero etc. as
described in Section 1.

To address this shortcoming Guerraoui and Kapalka [5] cgmmitln the notion ofopacity. A schedule,
consisting of an execution of transactions, is said tojmqueif there is an equivalent serial schedule such
that it respects the original schedule’s schedule-peaotidér and the lastWrites for every read operation
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(including the reads of aborted transactions) in the sedhedule is the same as in the original schedule.
To effectively capture this notion, Imbs and Raynal [9] tiedbthe aborted transactions in a given schedule as
read-only transactions. Then in the resulting schedulettigeo find an equivalent serial schedule satisfying
the above mentioned conditions.

In our characterization of schedules, the effects of abddr@Ensactions are not visible to other transac-
tions. No read operation outside an aborted transactiomezahfrom the aborted transaction. Thus in our
model aborted transactions can be viewed as read-onlyartogs. With this model, the notion of opacity
can be extended to closed nested transactions in a stightl manner. We define a class of schedules
called aLClosed Nested Opacityr CNOas follows:

Definition 4 A scheduleS belongs to Closed Nested Opacity (CNO) class if there eaistsial schedule
SS such that:

1. Event Equivalence: The eventssband S'S are the same. Formally,
((S.evts = SS.evts))

2. schedule-partial-order Equivalence: For any two nodegs n that are peers in the computation tree
represented by if ny occurs beforewz in S thenny occurs beforer in SS as well. Formally,
(tx : {ny,nz} C S.children(tx): (ny <snz) = (ny <gs nz))

3. lastWrite Equivalence: For all read operations the lasifés in.S and S'S are the same. Formally,
(8,88 :Vrx : S.lastWrite(rx) = SS.lastWrite(rx))

Even though the definition of CNO is similar to opacity, thendibion lastWrite equivalence captures
the intricacies of nested transactions. This class enshatshe reads of all the transactions including all
the sub-transactions of aborted transactions read censigilues. We denote this equivalence between a
scheduleS and a serial schedulgS assS ~, SS.

3.2 Conflict Notion: optConf

Checking opacity, like general serializability (for inste, view-serializability) cannot be done efficiently.

Restricted classes of serializability (like conflict-sdidgability) have been defined based on conflicts which
allow polynomial membership test, and facilitate onlinéestuling. Along the same lines, we define a
subclass of CNO, CP-CNO.

This subclass is based on the notion of conflicts. Two mempeyaiions operating on the same data-
item are said to be in conflict if one of them is a write operat{and the other is either a read or write
operation). We extend the notion of conflicts to closed me#tnsactions. We call this conflict notion as
optConf (conflict for optimistic executions). It is tailored for dtistic execution of sub-transactions. This
notion is similar to the idea of conflicts presented in [4] fmm-nested transactions. In this section we
preseniConflict Preserving Closed Nested OpaaityCP-CNOQa subclass of CNO based on optConf notion
for closed nested transactions.

Consider a schedul& and a serial schedulgS with the same set of events &s We show that, if the
set of optConfs between the eventsSimre also inS'S, then the lastWrite for every read is also the same in
S andSS. It must be noted that since the set of events (and transagt&oe the same i andS'S, from
Property 1 we get that their computation trees are also the sAs a result if an operatiany is at levell x
in S, then its level inS'S is alsol x .

The conflict notion optConf is defined only between memoryragens in extOpsSets (defined in
SubSection2.3) of two peer nodes. As explained earlier, de r{or transaction) interacts with its peer
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Figure 4: Example illustrating w-r and r-w conflicts

nodes through its extOpsSet. Consider two peer nades . For two memaory operations, y , my in the
extOpsSets ofi 4, np, S.optCon f(mx,my) is true if mx occurs beforeny in S and one of the following
conditions hold:

1. w-r optConf:mx is a commit-writewyx of n4 andmy is an external-ready in ng's dSet or
2. r-w optConf.mx is an external-ready in n4’s dSet,my is a commit-writewy of ng or
3. w-w optConf:mx is a commit-writew x of n 4 andmy is a commit-writewy of np.

Figure 4 illustrates the conflicts for a reagt. Herew; andnp are peers withy in np’'s dSet and
the lastWrite ofrx is wy. In the figure on the leftwy is a peer ofwy, andnp. This figure illustrates w-r
conflict betweenvy andry. The dotted line shows the conflict.

The figure on the right of Figure 4 illustrates r-w conflict. this figure,wy belongs tonp’s dSet and
is a peer ofrg. The commit-writew is a peer ofvp. The readrx is inng's dSet and imp’s dSet with
np being an ancestor ofgy. Sincerx’s lastWrite is not inng’s dSet and also not inp's dSet, it is an
external-read of bothg andnp. Hencery is in r-w optConf with bothwy andw.

Now, we will motivate the reason for defining the conflicts liistmanner. Consider a read (d) in
a schedules with lastWrite aswy,(d). Letwy(d) be an arbitrary write it that is optVis torx (d). Let
their levels bd x, 1,4 respectively. From optVis definition we get that, < [x andls < [x and these
relationships hold irt'S as well (since the set of events$handS'S are the same). The conflicts are defined
such thatw4 does not becomeyx’s lastWrite in any conflict equivalent serial sched§lg. The following
paragraphs explain this.

Forwy, to be the lastWrite of x in S.S, w;, must occur beforey in SS as well. This is ensured by
w-r optConf. Now, let us analyse the motive of r-w optConforfarthe definition of lastWrite, we get that
if [4 <1, (i.e,wy, is closer to the root tham; ) thenw 4 can never be the lastWrite of in S.S. Hence, it
suffices to define r-w conflict only between the readand any suchw 4 whose level 4 is greater than or
equal tol;,. We do not need to consider conflicts between read and whitgsate at level smaller than its
lastWrite (i.e. closer to the root than the lastWrite).

Consider the case that > [7,. Consider two peer nodes-, ng (which are at the same level in the tree
since they are peers). Let be innp’'s dSet andv 4 in ng’s dSet. Also, letrx occur beforav4 in S. Since
w4 IS OptVis tory, wa must beng’'s commit-write (ifng is a simple-memory operation then it is same as
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wya). Otherwisew 4 can not be optVis tox. As a result, the levels ofp, ng andw 4 are the same. From
our assumption, we have that,’s level is greater than or equal 9. Hencenp's level is greater than or
equal toly, as well. From Property 2 we get that;'s lastWritew;, can not be im p’s dSet. As a result; x
is an external-read of . Thus by defining r-w conflict between suck andw 4 we ensure thatv 4 can
never berx’s lastWrite in any conflict equivalent serial scheddls.

Now consider the case that the write, occurs beforev; andrx in S. Letw4’s level[4 be same as
.. Combining this with the observation thaty andw;, are optVis tory, we get thatv 4 andwy, are peers.
It must be noted that w-r conflict ensures that occurs before x in SS. But it is possible thatv 4 occurs
betweenw;, andrx in SS. Thenwy becomes x’s lastWrite inS'S. The w-w conflict ensures thai 4
occurs beforavy, in SS as well. Thus all the three conflicts ensure thatis rx's lastWrite inS'S as well.

The set of conflicts for the schedu# mentioned in Example 4 are:

{(ron1 (), wis' (x)), (roa11 (2), wizs® (2)), (wozz (x), w31 (x)), (woza (2), roz311(2)), (rozsu1 (x), w1 (),
(rogsi1 (), we3ss” (@), (w1 (1), o242 (), (WO (y), mo31 (1)), (W1 (), w3’ (¥)), (rozsi (), wiai? (x)),
(wi3a1® (), ro2321(y)), (wi3a> (), whsss: (1)), (W12 (), roza1 (), (wo2z (), To241 (), (ro31 (v), wis* (),

(ros2(2), ws* (2))}
The conflicts involvingt;,;; andt;, are not shown here. Now, we describe a property about w-riconfl
and a lemma about r-w conflict,

Property 15 If the lastWrite of read x in S is wy thenwy andrx are in w-r optConf. Formally,
((wy = S.lastWrite(rx)) = (S.optConf(wy,rx)))

Lemma 16 Consider a writew 4 and a readrx in a schedules. Letry’s lastWrite bew;,. Let the levels of
rx,wa,wr belx,la,lr respectively. If; is less than or equal tby andw 4 is optVis torx andrx occurs
beforew, in S thenS.optConf(rx,w,) is true. Formally,

(wr, = S.lastWrite(rx)) A (I, <1la) A (S.optVis(wa,rx)) A (S.ord(rx) < S.ord(wa)) =
(S.optConf(rx,wa))

Proof: Let holder ofw, ben4 (which is same am 4, if it is a simple-write). Sinceav, is optVis tory,
there is a peenp of ny such thatryx is in ng's dSet. Sincev4,np are peers we get thatvel(w,y) =
level(na) = level(ng) = l4. Here we have two cases depending on the levels;odndw 4.

case 1l;, < l4: This case implies thdg, < level(np). Combining this with the contrapositive of Property 2,
we get thatw, is not inng’s dSet. Butry is in ng’s dSet. Hence x is an external-read ofg.

case 21;, = l4: This case implies thdf, = level(np). Consider the case that; is innp’s dSet. Then from
Property 3, we get that holder af;, is same asz’s holder. This is possible only whan;, is ng’s
commit-write. Sincew;y, is lastWrite ofryx, it occurs before x in S. This implies thatw;, is not a
commit-write ofn g. This is possible only whewy, is not inng’s dSet. Hence x is an external-read
of np.

Thus in both the cases, we get that is an external-read ofz. From our assumptions we have that
na,np are peerswy is a commit-write ofn 4, and we are given thdtS.ord(rx) < S.ord(wa). These are
the conditions of r-w conflict. Hencé,.optCon f(rx,w4) is true. O

Based on this conflict definition, we define a class of schedtddled asConflict Preserving Closed Nested
Opacityor CP-CNQ
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Definition 5 A scheduleS belongs to CP-CNO class if there exists a serial scheddesuch that:

1. Event Equivalence: The eventssodnd S\S are the same. Formally,
((S.evts = SS.evts))

2. schedule-partial-order Equivalence: For any two nodgs n z that are peers in the computation tree
represented by if ny occurs beforev in S thenny occurs beforer in S.S as well. Formally,
(tx : {ny,nz} C S.children(tx) : (ny <snz) = (ny <ss nz))

3. optConf Implication: if two memory operations.$hare in optConf then they are also in optConf in
SS. Formally,

(Vmy,Ymyz : {my,mz} C S.evts : (S.optConf(my,mz) = SS.optConf(my,mz)))

We denote this equivalence to such a serial scheduls as,. SS). As we can see, the class CP-CNO
is different from CNO only in condition 3. We prove this ecalence also ensures that lastWrites are the
same i.e. class CP-CNO is a subset of CNO.

Theorem 17 If a scheduleS is in the class CP-CNO then it is also in CNO. Formally,
((SeCP-CNO = (S € CNO))

Proof: SinceS € CP-CNO, we know that there exists a serial schediflesuch thatS ~,. SS. We
will prove that the lastWrite for every read operation St is same as in5. We will prove this using
contradiction. Consider a read. Let (wy = S.astWrite(rx)) # (wz = SS.lastWrite(rx)). Let

S.parent(wy) = tp andS.parent(wz) = tg. Sincewy is the lastWrite of-x in .S, from the definition of
optConf and Property 15, we get tifabptCon f (wy, rx ) is true which also implies'S.optCon f (wy, rx)

is true. Thus from the definition of optConf we get that occurs prior tarx in SS. Formally,

S.optCon f(wy,rx) Soc55,

L, (88 ord(wy) < SSord(rx))) (1)

(wy = S.lastWrite(rx)) Property 15,

SS.optCon f(wy,rx)

de finition

From the definition of lastWrite we have that

S.evts=SS.evts,
_—

(wy = S.lastWrite(rx)) = S.optVis(wy,rx) SS.optVis(wy,rx)) 2

Lemma 7

S.evts=SS.evts,

(wz = SS.dastWrite(rx)) = SS.optVis(wz, rx) S.optVis(wz,rx)) (3)

Lemma 7

Consider Eqn(1) and Egn(2). We have that occurs prior torx in S.S andSS.optVis(wy, rx). Further
we have thatv is the lastWrite of-x in S'S. Combining these with Property 12 we get thef.lcvel (wy)
is greater than or equal ©S.level(wy ). Formally,

((SS.ord(wy) < SS.ord(rx)) A SS.optVis(wy,rx) A (wz = SS.lastWrite(ryx)) LProperty 12,

(SS.level(wz) = SS.level(wy)) SScots=5.evts, (S.level(wz) = S.level(wy))) (4)

Now we have two cases based on the positions gfr x in S.
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Case 1S.ord(wgz) < S.ord(rx): Herewy also occurs beforex in S. Similar to the argument of Eqn(4),
combining Egn(3) with this case we get that levekgf in S andSS is greater than equal to;'s
level,

((S.ord(wz) < S.ord(rx)) A S.optVis(wz,rx) A (wy = S.lastWrite(rx)) LProperty 12,

(S.level(wy) = S.level(wy)) S cvts=5.cuts, (SS.level(wy) = SS.level(wgz))) (5)

Combining Eqn(4) with Eqn(5) we get that level®f- in S andSS is equal tow;’s level,

(S.level(wyz) = S.level(wy)) A (S.level(wy) = S.level(wz)) = (S.level(wz) = S.level(wy))

ST, (58 Jevel(wy) = SS.level(wy))  (6)

This gives us that the levels are the same. Combining thidtregth the information ofS i.e. wy
occurs prior tory in .S, wy is optVis torx andwy is the lastWrite of-x in .S and Property 13 we
get thatw, occurs prior tawy in S. Formally,

((S.level(wz) = S.level(wy)) A (S.ord(wz) < S.ord(rx) A S.optVis(wz,rx)A

(wy = S.lastWrite(rx)) Lroperty 13, (S.ord(wz) < S.ord(wy))) (7)

Similarly combining Egn(6) with the information aba8is, we get thatvy occurs prior tav in S'S.

((SS.level(wz) = SS.level(wy)) A (SS.ord(wy) < SS.ord(rx) A SS.optVis(wy,rx)A

(wz = SS.lastWrite(rx)) Lroperty 13, (SS.ord(wy) < SS.ord(wgz))) (8)
From Eqn(2) we have thaty is optVis torx in S and from Eqn(3) we have that is optVis torx

in S. In Egn(6) we obtained that level af; is same asvy’s level in.S. Combining these results with
Property 6 we get that parent af; is same asy in S,

(S.optVis(wy,rx) A S.optVis(wz,rx) A (S.level(wz) = S.level(wy))

SIS, (S parent(wy) = S.parent(wz))) (9)

Now combining Eqn(7), which states that, occurs beforavy in S, with the result obtained just
above in Egn(9) we get that is in optConf withwy in S. FromS =,. SS, we get that this is also
true inSS. Hencewy should also occur prior twy in S.S,

((S.parent(wy) = S.parent(wz))A((S.ord(wz) < S.ord(wy)) doz;t‘CTf (S.optConf(wz,wy))
5055, (S.optConf(wz,wy)) optCon] ((SS.ord(wz) < SS.ord(wy))) (10)

de finition
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But this result contradicts with Eqn(8) which states tlagt should occur prior tavy in SS. Hence
this case is not possible.

Case 2S.ord(rx) < S.ord(wz): In this case-x occurs beforevy in S.

Eqn(3) statesv is optVis tory in S. From Egn(4) we have that level af; is greater than or equal
to level ofwy which is the lastWrite of x in .S. Combining all these with the current case we obtain
thatry, wy are in optConf inS. From S ~,. SS, we get that this is also true ifiS. Hencewy
should occur afterx in SS,

(S.ord(rx) < S.ord(wz)) A (S.level(wz) = S.level(wy)) A S.optVis(wz,rx)A
(wy = S.lastWrite(rx)) Lemma 16, (S.optConf(rx,wz)) S%oeSS,
(SS.optConf(rx,wz)) optConf (SS.ord(rx) < SS.ord(wz))) (11)

de finition

Thusw, cannot be lastWrite ofx in .S.S which again is a contradiction. Hence this case is also not
possible and rules out all cases.

This implies thafwz # SS.lastWrite(rx)). ]

Now we give an example of a schedule which is in CNO but not iRGNO. Consider the following
computation tree and schedule:

Example 5 Computation Tree:

to : {tinit: to1, to2, to3, t fin }s

to1 : {smo11 = ro11(x), smoi2 = wo12(y), co1 }»

toz : {smo21 = 1021 (), sMo22 = wo22(Y), co2},

to3 : {smo31 = 1031(2), sMo32 = wo32(Yy), co3 }

Schedule:

54 : ror1(2)ro (y)wor2 () wii? (y) corwoae (y) wis? (y) coarost (2)wose () wis? (y) cos

Figure 5 shows the computation tree correspondingj4toAn equivalent opaque serial schedule is:

S5 : g1 (y)w022 (y)w(OJ%Q (y)0027“011 ($)w012(y)w8%2 (9)0017“031 (Z)w032 (y)w8§’2 (y)Cos

The set of optConfs ih4:

{(T021 (y))7 w8%2 (y))7 (T021 (y))7 wo22 (y))7 (T021 (y))7 w8§2 (y))7 (w8%2 (y)7 w8%2 (y))7 (w8%2 (y)7 w8§2 (y))7

(w3 (y), wo3” ()}

But there is no optConf equivalent serial schedule for tkengple. In the next section we will show this
using the graph construction algorithm. This shows thatGD ¢ CNO.

In many of the existing STM systems proposed (for non-nestmasactions), whenever a conflict is
detected between a read and a write operation of two traosacbne of the transactions is aborted [9]. It
can be verified that the set of schedules accepted by suchemsisa subclass of CP-CNO. By defining
optConf only between external-reads and commit-writegpae®ed to any arbitrary read and write, the class
CP-CNO is as non-restrictive as possible.
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tfin,
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7021 (Y) wo12(Y)

Figure 5: The computation tree for Example 5

3.3 Algorithm

Now, we describe the algorithm for testing the membershifhefclass CP-CNO in polynomial time. Our
algorithm is based on the graph construction algorithm bgeRde and Abbadi [15]. For a schedulg
the algorithm computes a conflict graph (also referred dalstion graph) based on optConfs, denoted
as S.optGraph, and checks for the acyclicity of the graph constructed. \alkthis asoptGraphCons
algorithm The graphS.optGraph is constructed as follows: (1) Vertices: It comprises oftlal nodes in
the computation tree. The vertex for a node is denoted asy. (2) Edges: Consider each transactign
starting fromt,. For each pair of childrenp, ng, (other thart;,,;; andt;,,) in S.children(tx) we add an
edge from vertexp (corresponding ta p) to vertexvg (corresponding tag) as follows:

1. Completion edges: ifp <5 ng

2. Conflict edges: For any two memory operatioms;, m such thatny is innp's dSet andn  is in
ng's dSet, an edge fromp to ng if S.optConf(my,mz) is true.

Then the algorithm checks for the acyclicity of the grahbptGraph constructed. Since the position of
the transactions;,,;; andt s;,, are fixed in the tree and in any schedule, we do not consider ieur graph
construction algorithm. It must be noted that in our graphstaction all the edges are between vertices
corresponding to peer nodes. There are no edges betwedesdttat correspond to nodes of different
levels. Thus the graph constructed consists of disjoingiagihs. Applying this algorithm on the schedule
of S3 of Example 4 we get the graph shown in Figure 6. In Figure 7 veevghe serialization graph for the
scheduleS4 of Example 5. As one can see this graph has a cycle caused byrfiiets: (w1 (y), wis? (v))
and(ro21 (), wdt? (y)). Hence this schedule is not in CP-CNO.

Now we prove that ifS is in CP-CNO then the graph constructed is acyclic.

Proposition 18 Consider a graphyl, which is a subgraph of another grapi2. If g1 is cyclic theng2 is
also cyclic. Formally,
((g1 € g2) A (gl is cyclic) = (g2 is cyclic))
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np21 Np22
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Figure 6: The serialization graph for the schedule in Exampé 4. Only the subgraphs of nested trans-
actions are show here.

no1

103
o2

Figure 7: The serialization graph for the schedule in Exampé 5. Only the subgraph of the nested
transaction ¢ is show here.
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From graph theory we get the above property. Next we get thewimg property and lemmas from
optGraphCons algorithm.

Property 19 Consider a schedulg, and the corresponding grapl§,optGraph, constructed by optGraph-
Cons algorithm. Let it contain two vertices; (corresponding to the tree nodez) andvg (corresponding
to the tree nodexs). If there is an edge frompg to vg then the tree nodesg andng have the same parent.

Lemma 20 Consider a serial schedul8S, its serialization graphSS.optGraph constructed using opt-
GraphCons algorithm. Let it contain two verticeg (corresponding to the tree nodez) and vg (corre-
sponding to the tree nodes). If there is an edge fromy to vg then the last event ofy in SS occurs
before the first event afg in SS.

Proof: From the construction &8 S.optGraph as observed in Property 19 we have that there is a transaction
tp which is the parent ofhp andng. Now we have two cases depending on the type of edge congectin
fromvg to vg.

e Completion edge: From the definition of completion edge, inectly get thatS'S.ord(SS.ng.last) <
SS.ord(SS.ng.first).

e Conflict edge: From the definition of conflict edge, we have,tha
((mx,my : (mx € SS.dSet(ngr))A(my € SS.dSet(ng))A(SS.parent(nr) = SS.parent(ng))A

(SS.optCon f(mx,my))) dOZt??f ((mx,my : (mx € SS.dSet(ng))\(my € SS.dSet(ng))A

(SS.parent(ng) = SS.parent(ng)) A (SS.ord(mx) < SS.ord(my)))
Applying Property 14 on this result we get thta.ord(SS.ng.last) < SS.ord(SS.ng.first)

Lemma 21 For a serial schedul&'S, SS.optGraph is acyclic.

Proof: We will prove this using contradiction. Le&tS.optGraph be cyclic. Let a cycle in5S.optGraph

be composed df vertices,ux1 — vxs — ... = vxr — vx1. Now from Lemma 20 we get that,
(SS.ord(SS.nxi.last) < SS.ord(SSmnxs.first) < SS.ord(SS.nxs.last) < SS.ord(SS.nxs.first) <

.. < S8S8.ord(SS.nxi.first) < SS.ord(SS.nxi.last)) = (SS.ord(SS.nxi.last) < SS.ord(SS.nx;.last))
This is not possible. Henc&S.optGraph cannot be cyclic. O

Lemma 22 Consider a schedulg and a serial schedul®'S such that(S ~,. SS). ThenS.optGraph is a
subgraph ofSS.optGraph. Formally,
((S mpe SS) N (SS'is serial) = (S.optGraph C SS.optGraph))

Proof: To prove this we have to show that, (if ~,. SS) then (S.optGraph.v = SS.optGraph.v) A
(S.optGraph.e C SS.optGraph.e)).

From optGraphCons algorithm we get that every vertex in tgly corresponds to a computation tree
node. SinceS =~,. SS5), the set of events and transactionsSohre the same aSS. Hence we get
(S.optGraph.v = SS.optGraph.v).
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Now coming to the edges, any edgeSmptGraph corresponds to either a completion or conflict edge
between peer nodes . From=,. equivalence we get that these relationships also existSin Hence
these edges also exist §5.optGraph. Thus we haveS.optGraph.e C SS.optGraph.e). This implies
(S.optGraph C SS.optGraph). O

Lemma 23 Let S be a schedule for which there is a serial sched8lg such that(S ~,. SS). Then
S.optGraph is acyclic. Formally,
((S mpe SS) N (SS'is serial) = (S.optGraph is acyclic))

Proof: We will prove this using contradiction. L&t optGraph be cyclic. We have,

(S mpc SS) A (SSis seria) A (S.optGraph is cyclic)
= { Lemma 22}

(S.optGraph C SS.optGraph) A (SS is seria) A (S.optGraph is cyclic)
= { Property 18}

(SS'is seria) A (SS.optGraph is cyclic)
= { contrapositive of Lemma 2]L

(SS'is seria) A (SS'is not seria)

Here we have a contradiction. HenSeptGraph is acyclic. O

Next we show that for a given schedutg if the serialization graph is acyclic thehis in CP-CNO.
We give an algorithm for generating conflict preserving aleschedule fromS.optGraph if it is acyclic.
We call thisexpander algorithmThe expander algorithm separates the disjoint sub-grafpi®ptGraph.
For a transactiortx, a subgraph denoted gs is constructed by taking all the nodes corresponding to
tx’s children nodes and the edges between them. To constridingd schedule the expander algorithm
works with xschedules A xschedule is like a normal schedule but also has tramsactperations in its
event set. Similar to a schedule all the events in a xschetaléotally ordered. When a xschedule has no
transaction operations in it, then it is same as a normaldsgbe For a transactiotyy, a subgraph denoted
asgx = tx.subGraph(S) is constructed as follows:

Initialize a xscheduleX S to ¢,

1 Parse the xschedulgS. Perform the following actions when each of the followingrecountered:

1.1 Transactiori: Replace this transaction with all its child operationdlofwed byt x’s commit-
write set and y's terminal operation. The order of;’s children is given by a topological sort
obtained from the graphy = tn.subGraph(S).
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1.2 Memory and Terminal operations: Nothing needs to be .done

2 Repeat the above step until the serial schediufecontains only memory and terminal operations.

When the expander algorithm starts, the xschedifehas only one transactiag in it. Then expander
algorithm recursively replaces any transaction operatioxiS with its children, its commit-write operations
and its terminal operation untiX'.S has no more transactions in it. We denote the various changés
xschedule by subscripting 'S. The expander algorithm starts withS,, working throughX .S, XS5 and
so on until it reaches the final schedWes ;. We denote the final scheduleS; as RS (resultant schedule).

The topological sorts of the various subgraphs obtainedpplyang this algorithm or63.optGraph of
Example 4:

9o : toitosto2

go1 : toritoi2

go2 * to2z2to23to21t024
go21 : toz11to212t0213
9023 * 023110232

90231 * t02311%02312
go232 * to2s21l02322t02323
9024 * to241%0242t0243
gos : tozitosztoss

The resultant schedule is:

56 : ro11 (z)worz (y)woi (y) co1mo31 (y) 032 (2)woss (d)wis® (d) coswonz () rozsi1 (@) wozsiz (v)wiast 2 (¥) cozst
02321 (Y) Wo2322 () Wo2323 (y)w8§§§2 (w)w%g%g (y)co232a02370211 (2)wo212 () wo213 (y)wgg%Q (x)wgg%?’ (y)co21

T0241(x)T0242(y)ZU0243(Z)108%33(2)108%1(Jﬂiﬂggl(y)lU8%4(Z)Co2

Now we will prove if S.optGraph is acyclic then the resultaoheduleR.S obtained is serial and optConf
equivalent to the original schedute

Lemma 24 Consider aX S; that has two nodes p, n¢g such thata p occurs beforewg. Then inX.S;(RS),
the last event ofip, X S;.np.last occurs before the first eventof), X.S¢.nq. first. Formally,
({np,ng} C XSj.evts : XS;.ord(np) < XSij(ng)) = (XSp.ord(XSs.np.last) < XSy.ord(
XS¢.ng.first)))

Proof: This is can be easily proved using induction on the distaeteden: p, ng in X.S;: 6 = | X S;.ord(np)
— X S;.ord(ng)|. 0

One can see the following property abdus.

Property 25 Consider a schedulé& such thatS.optGraph is acyclic. Then the resultant scheduks
satisfies validity of transaction limits i.e. after a tramsian terminates no operation (memory or terminal)
belonging to it should execute

In the next lemma we describe the relationship between edgegraph ofS.optGraph and the resultant
scheduleRS.
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Lemma 26 Consider a schedul§ with the graphS.optGraph being acyclic. Let there be two vertices in
vp, v in it corresponding to tree nodesp, n. If there is an edge fromp to v then inRS the last event
of np occurs before the first eventof,. Formally,

(vp,vg C S.optGraph.v,e; € S.optGraph.e : (e; connectap tovg) = (RS.ord(RS.np.last) <
RS.ord(RS.ng.first)))

Proof: From our construction of.optGraph, we get that.p, ng are peers. Let these nodes be children of
a transactiorty in the computation tree. Let the subgraph corresponding toe gn = tx.subGraph(S).
When the expander algorithm encountexsin some xschedul&'S; and parses, it replaces by all its
children, followed bytxy’'s commit-write set andy’'s terminal operation. The ordering among the child
nodes is given by topological sort gf;.

Since there is an edge fromp to vg in S.optGraph, the expander algorithm ensures that occurs
beforev, in the topological sort ofy. Hence inX S(; ), the expander algorithm placesg beforen,.
Combining this result with Lemma 24, we get thatird' the last event ofip occurs before the first event
of nQ. O

Next we show thafz.S satisfies each of the conditions mentioned in the definittoc@d®-CNQ

Property 27 If S.optGraph is acyclic thenR.S contains the same events gsFormally,
((S.optGraph is acyclic) = (S.evts = RS.evts))

This property directly follows from the observation thag #xpander algorithm does not alter the computa-
tion tree. It only alters the schedule of the memory openatio

Property 28 If S.optGraph is acyclic thenR.S is serial.
This property follows directly from the working of expandsdgorithm.

Lemma 29 Consider a schedul& such thatS.optGraph is acyclic. Lettx be a transaction inS with
childrennp andng. If np occurs beforeng in S thennp also occurs beforeg in RS. Formally,
(S :tx € Sinodes, {np,nqg} C S.children(tx) : ((S.optGraph is acyclio A (np <s ng)) = (np <grs

nQ))

Proof: From the construction af = S.optGraph we can see that it contains two vertiegs(corresponding
to np) andvg (corresponding towy). If (np <g ng) then ing there is an edge from, (the vertex
corresponding taup) to v, (the vertex corresponding tap). Now combining this with Lemma 26 we get
that (RS.ord(RS.np.last) < RS.ord(RS.nq.first)) which implies thatnp <grs ng). O

Lemma 30 Consider a schedul§ with two memory operations: x, my such thatS.optCon f (mx,my)
is true. If S.optGraph is acyclic then inRS, m x occurs beforeny . Formally,
(S.optGraph is acyclig A S.optConf(mx,my) = (RS.ord(mx) < RS.ord(my))

Proof: From the definition of optConf, we get that there exist tworpesdesn p, ng such thatny is in
np's dSet andny is in ng’s dSet. From the construction of= S.optGraph we can see that it contains
two verticesvp (corresponding tmp) anduvg (corresponding tawg) and there is an edge betweep and
vg. Now the argument is similar to the proof of Lemma 29. Due &optesence of an edge, from Lemma 26
we get thaf RS.ord(RS.np.last) < RS.ord(RS.ng.first)). Hence,nx occurs beforeny in RS. O
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Lemma 31 Consider a schedulé& such thatS.optGraph is acyclic. Then the lastWrite for every read
operation inS' is the same as iS. Formally,
(S.optGraph = (Vrx € S.evts : (S.lastWrite(rx) = RS.lastWrite(rx)))

Proof: The proof is very similar to Theorem 17. O

Lemma 32 Consider a schedul§ with two memory operations: x, my such thatS.optCon f (mx,my)
is true. If S.optGraph is acyclic thenRS.optCon f(mx, my ) is true as well. Formally,
((S.optGraph is acyclig A S.optConf(mx, my) = RS.optConf(mx,my))

Proof: From Property 27, we get that all the eventdd is same as$5. Thus their computation trees are
the same. Further from Lemma 31, we get that all the last@/fideevery read are same$hand RS. Now
let us consider each case of conflict:

e mx = wx, my = ry: This case implies that there exist two peer nodgsn such thatvx isnp’s
commit-write andry is ng’s external-read ir5. Since the computation trees Sfand RS are the
same and the lastWrites for every read are the same we hawe tha np’'s commit-write andry is
ng's external-read imRS as well. From Lemma 30, we get thaty occurs beforey in RS. These
are the conditions fotwy andry to be in optConf inRS. Hence,wx,ry are in optConf inRS as
well.

e my = rx, my = wy. The argument is the same as above.

e my = wx, my = wy: Here,wx andwy are peers irb. Since the computation trees sfand RS
are the sameyx andwy are peers irRS as well. From Lemma 30, we get thaty occurs before
wy in RS. Hencewx,wy are in optConf inkS as well.

Thus, in all the cases we get thas.optCon f (mx, my) is true. O

Finally we have,
Theorem 33 (S € CP-CNO < (S.optGraph is acyclic)
Proof: We will prove each direction.

(=) (S € CP-CNO = (S.optGraph is acyclic):
Here we have that,

(S € CP-CNO % ((S ~oe SS) A (SS is seria)) 222, (S optGraph
is acyclic)

(<) (S.optGraphis acyclic = (S € CP-CNO:

SinceS.optGraph is acyclic, the expander algorithm generates a sche@dleFrom Property 28 we
get thatRS is serial. Now we will prove each of the conditions requirgadtie definition ofCP-CNQ

— Event Equivalence: From Property 27 we get that,
((S.evts = RS.evts) A (S.nodes = SS.nodes)).
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— schedule-partial-order Equivalence: From Lemma 29, welget
(S :tx € Sinodes, {np,ng} C S.children(tx) : (np <gng) = (np <grs nqQ))
— optConf Implication: From Lemma 32, we get that,
(S: ({mx,my} C S.euvts) : (S.optConf(mx,my)) A (S.optGraph is acyclic) =
(RS.optConf(mx,my))).

This proves all the requirements for CP-CNO.

4 Extensions to Closed Nested Opacity

In the previous section we developed a polynomial time \adgié characterization of CNO. In this section
we will develop some extensions to CNO.

4.1 Drawback of CNO

Given a schedule with aborted transactions, opacity spedifiat the read operations of aborted transac-
tions also read consistent values. To ensure that no tiamsaeads from an aborted transaction, aborted
transactions are treated as read-only transactions. A gokedule is said to be opaque if there exists a
serial schedule equivalent to it. In this way the currentmation of opacity ensures that the reads of all
transactions (including aborted transactions) are ctargiand the writes of aborted transactions are hidden
from other transactions. Class CNO is an extension to gpatiich treats aborted transactions in the same
manner.
Now consider the following transactions,

Transaction 3tg;
1: ready
2: write y
3: write z

Transaction 4tgo
1: readd

2: invoketgas
3: invoketgos

Transaction 5¢g99
1: ready
2: readz
3: writed
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Figure 8: The tree for Example 6

Transaction 6tg23
1. readp
2: readz
3: write z

For this example, let the transactionys, tgo execute in an interleaved manner. Let the following sched-
ule represent the execution of these transactions. In¢hisdslle all the transactions execute to completion
and commit.

Example 6 to : {tim'ta to1, to2, tfin}a

to1 : {smo11 = ro11(y), smo12 = wo12(y), smo13 = woe13(2)},

toz : {smo21 = r021(d), to22, to23},

to2 : {smo221 = T0221(Y), sMo222 = T0222(2), SM0223 = Wo223(d)},
to23 : {80231 = 70231 (D), SM0232 = T0232(2), SM0233 = W0233(2)},

Schedule:
S7 1011 (y)ro21 (d)wor2 (y)roze1 (v)wors (2)wdi? (y)wii (2) corrozes (2)wozes () wiss® (d)cozerost (p)ro2s2 (2)
wop33 (2)wpss” (2)cozswis” (d)wl” (2)coz

Consider a scheduleil based on the class CP-CNO (and hence the class CNO) whictusebdhe
events. The scheduler is invoked on-demand basis. Whensat@on wishes to perform a read operation or
wishes to commit, it invokes the scheduler. On being invokied scheduler looks at the current operation
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(either read or commit operation) with the history of evealigady executed. Using all these events it
constructs a serialization graph based on optConf and steclacyclicity. If the graph is acyclic, then the
scheduler allows the current operation to execute. Otlsenitidoes not allow the operation to execute and
aborts the corresponding transaction.

In the given schedule, the scheduler allows all the evelhthéitransactiorty; commits. None of these

events form a conflict cycle. Thus the schedule of the everts a

ro11(y)ro21 (d)wor2 (y)roze1 (y)wors (2) w2 (y)wii3 (2)cor

Then, let the next event to be executedrgz(z) belonging totpee. Given this sequence, the scheduler
will abort transactiornty,; before it executes this step. In between the reads of thablasy and z by the
transactiontys, the transactiort;; updates these variables. Thus a conflict cycle is formed deivthe
transactiongy; andtg, in the serialization graph and hence this schedule is noPrCBIO. As a result the
scheduler will abort the transactiog,.,. Further it can be verified that this schedule is not in thef@aNO
as well.
Next the events of the transactiags execute as shown in the schedule. The read operagign(p) is
allowed by the scheduler. The next event to execute is a neaGtionrgqs2(z). But the scheduleH will
not allow this event to execute as it causes a conflict cytleart be seen that the read operatigs; (v)
by the transactions is performed before the transaction commits. But the readyqs2(z) is performed
afterto; commits and the lastWrite ofya32(2) is w)i?(z). Due to these operations, a cycle is formed in
the serialization graph between the notigsandtq,. Even though the transactiogy, has been aborted, its
read operation still causég,z to abort. Thus, this schedule of events is not in CP-CNO. I&imd above
discussion, it can be verified that this schedule is alsom@NO. For this schedule to be accepted by the
scheduler, no sub-transactiontgf starting aftertyoo has aborted can read any of the data-items written by
to1. Thus, in the worst case an aborted sub-transaction cae @ausp-level transaction itself to abort.
This shows that with CNO, an aborted sub-transaction ca@rslvrestrict the concurrency of nested
transactions. An aborted transaction affects the traiogecthat follow it. But ideally we would want an
aborted transaction to have no affect on the transacticaisfoliow it. To address this shortcoming, we
formulate a new correctness criterion calk®dort-Shielded Consistenoy ASC This criterion is based on
the notion of sub-schedules. Now we will describe a few matatwhich we will later use to describe the
correctness criterion.

4.2 Notations

For a transactiorty in S we denote the terminal operations of all the sub-transagtio ¢ x's dSet by
terminal operation ofS.termOp(tx). We denoteS.schOps(tx) as the set of operations ifldSet(tx)
which are also present ifi.evts along with the set of terminal operations. FormallyschOps(tx) =
(S.dSet(tx) N S.evts) U S.termOp(tx).

We define two functions for a commit-write operation.ulf is a commit-write operation it%, then
S.orgWrite(wx (d)) denotes the original simple-write afy (d). Let the holder of the commit-write x be
nx. Then functionS.baseWrite(wx (d)) denotes the corresponding commit-write or simple-writelam
the child transaction af x. For example in57 of Example 6, for the commit-writesJ32(d), the baseWrite
is wi333(d) and the orgWrite iSvg203(d). For the commit-writewdss>(d), the baseWrite and orgWrite are
wo223(d). Thus the orgWrite is always a simple-write whereas the\Waite can be either a commit-write
or a simple-write.

We define a few notations based on aborted transactions inealgle. Consider a schedute with a
transactiont x. We denoteS.abort(tx) as the set of all aborted transactions s dSet. If¢ x is an aborted
transaction therb.abort(tx) containstx as well. Forty, we defineS.prune(tx) as all the events in the
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schOps ot x after removing the events from all the aborted transactiong’s dSet. Formally,
S.prune(tyx) = {S.schOps(tx) — ( U S.schOps(ta))}

ta€S.abort(tx)
Intuitively this function denotes the schOps remaining inafter pruning all the aborted transactions

from it. If tx has no aborted transaction in its dSet teprune(tx ) is same a$.schOps(tx). If tx is an
aborted transaction thefiprune(tx) is nil. To capture all the pruned descendants of an aboré@daction
we define chrnPruned (children-pruned) function. For asationt x (either committed or aborted),

S.chrnPruned(tx) = { U S.prune(ty) U S.cwrite(tx)}
ty €S.children(tx)

It must be noted that for a committed transactiqn S.prune(tx) is same a$.chrn Pruned(tx ). Also for
a scheduleS.prune(ty) denotes the schedule events with only the committed tréinsacand no aborted
transaction.

For a noden p, its anscTermSedenoted as.anscTermSet(np) is the set of terminal operations of all
its ancestors in the schedule. We denote a nodecasnnitted nodd it is either a committed transaction
or a simple-memory operation.

4.3 Sub-Schedules

Now we will formally define the notion of sub-schedules. Givgewell-formed schedul® a sub-schedule
subS should satisfy:

o subS.evts C S.evts
e subS.ord C S.ord

Consider an event; in a scheduleS. If the event is a memory operationy then let its holder be
nx. The nodenx has well defined parent and set of ancestors; i§ a terminal operation, saf-, in .S
belonging to transactiony. Then similar tony, ty has a well defined parent and set of ancestors. Thus
an event; in a scheduleS corresponds to a valid sub-tree of the computation treeerighng this idea, a
subset of events of a schedule form a valid sub-tree of tlyggnaiticomputation tree and not a collection of
forests.

Consider a sub-schedutebS of a schedules. Since the events isubS could be a random subset of
events of &, it may not signify anything. FotrubS to be meaningful it must be well-formed. The conditions
of well-formedness defined in SubSection2.3 for schedutesapply to sub-schedules. The set of events
of the sub-schedule is a subset of the events,ia well-formed schedule. Since the order of events in the
sub-scheduleubsS is same as the order of the events in fheafter a transaction terminates no operation
belonging to it executes. This is the condition (1), vajidif transaction limits, of the well-formedness
requirement.

A read operation in a sub-schedule is valid if it reads ittlage value ofS which is condition (2) of
well-formedness. Thus for any read operation in a sub-adbeds lastWrite inS should also be iBubS.

In addition to this, for any memory operationy in subS, all the memory operations thaffectm y in S
should also be inubS. This requirement is callechusalityof events. We say thaubS is causally complete
w.r.t my if it contains all the events that affesty in S. Now we define a few functions to formally define
the affects relationship. First, we define a functisldsefulbetween two memory operations. This function
defines when one memory operation is useful to another meopesation. It is similar tammediately-
useful-torelation of [17]. For two memory operationsy , m x in S, itis denoted as.isU se ful(my, mx):

1. my = wy,myx = rx: wy is the lastWrite of-x thenS.isUse ful(wy,rx) is true
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2. my =ry,mx = wy, Wherewy is a simple-write: If there exists a nodg> such that p is optVis
to wx, ng is a peer ofrp with wy is inng's dSet,np occurred beforewg in S, ry is in the pruned
set ofnp andry is an external-read ofp thenS.isUse ful(ry, wx) is true. Formally,

(Inp,3Ing : (np,ng are peersA (np <g ng) A (ry € S.prune(np)) A (SlastWrite(ry) ¢
S.dSet(np)) A (wx € S.dSet(ng)) = S.isUseful(rx,wy))

3. my =ry,mx = wx, wherewx is a commit-write: LetS.orgWrite(wx) bewy, the corresponding
simple write. TherS.isUse ful(ry,wx) is true whenS.isUse ful(ry,wz) is true

A read operation’s lastWrite affects the read operationnddst is useful to the read operation. Now
consider a simple-write operation;x, and a read operation, . If the read is its peer and occurs before
it in the schedule theny affectswy. Consider another scenario. et andng be two peer nodes such
thatnp occurs beforeig in S. Letwx be inng’s dSet. Hencevp is optVis towx. If ry is in the pruned
set ofnp and is an external-read afp then it affectswy. The same idea can be extendedutg if it is a
commit-write. Hence'y is useful towy. Thus, from the definition of isUseful we get thatify is useful
to mx, thenmy occurs beforeny in S.

In the schedul&s7, S7.isUse ful(wii3(2), mo232(2)) is true, sincawii3(z) is the lastWrite ofrga32(2).
Then S7.isUse ful(ro11(y), wois(2z)) and S7.isUse ful(roi1 (y), wdi?(z)) are true sincepin <s7 wois,
wo13 is the simple-write forwdi? androy1 (d) being a simple-memory operation is an external-read df.itse

Based on isUseful function, for a given memory operatiog in S, we define the saisefulMemOps
which consists of all memory operations that are usefuh g,

S.useful MemOps(mx) = {my|S.isUseful(my,mx)}

Next based on the notion of usefulMemOps, we identify a sataofes that are useful to a memory
operationmy in S. It consists of all the nodes that are optVisroy and have at least one memory
operation in their pruned sets which is usefuhta.. We call this set assefulNodesFormally,
S.wusefulNodes(mx) = {ny|S.optVis(ny,mx) A (S.prune(ny) N S.useful MemOps(mx) # nil)}

It can be verified that any node in the usefulNodes set of a mepperationm x terminates beforevx in
the schedule.

Next we define a functiotransUsefulNodeghat computes all nodes that are directly and transitively
useful to a memory operation x. This is recursively defined and uses usefulNodes as thechase

S.transUseful Nodes(mx) = (S.usefulNodes(mx))J
( U S.transUseful Nodes(my))

ny €S.useful Nodes(mx )Amy €S.prune(ny)

Thus any node that is useful to a memory operation is alsgithegly useful to it. It must also be noted
that if a transaction is aborted, then it cannot be usefulamsitively useful to any memory operation. Thus
we have the lemma,

Lemma 34 If a noden is useful to some memory operationy in S, then the nodexz is a committed
node. Formally,
(ngz € StransUsefulNodes(mx) = nz is a committed node

Proof: This can be proved using induction over the schDist of thiedaant ofn.; from m x. The base case
of the induction is whem is in the usefulNodes set of x. O
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The notion committed node is defined in SubSection4.2. &mhil usefulNodes, it can be proved that all
the nodes in the set transUsefulNodes terminate befgran S.

Using the set transUsefulNodes we will construct the sdulSehEvts for a memory operation x. It
consists of all the pruned operations from all the nadgsthat are transitively useful tox. Formally,
S.usefulSchEvts(mx) = {( U S.prune(ny))}

ny €S.transUseful Nodes(mx)
Using usefulSchEvts we can formally define affects relatngm A memory operatiomy affects another

memory operatiomn x if my is in the usefulSchEvts set ofy-. Formally,
true  (my € S.usefulSchEvts(mx))
false otherwise

Having formally defined the affects function, we state trgpuireements for the well-formedness of any
sub-schedule:

S.af fects(my,mx) =

1. Causality Completeness: For any memory operatignpresent in a sub-schedulebsS of a schedule
S, the sub-schedule should also contain all the memory dpesathat affectn x. Formally,
(mx € subS.evts = S.usefulSchEvts(mx) € subS.evts)

Consider a sub-schedulebS of a schedules that is causally complete. With this definition of causal-
ity completeness, we get that if a commit-write operatiog is in subS then the baseWrite ofvy,
S.baseWrite(wx) is also insubS. If wx's baseWrite is another commit-write then its baseWritelss a
in subS. Following the baseWrites recursively which terminatesvi’s orgWrite, we get that it is also
included insubsS.

Having described the usefulSchEvts w.r.t a memory opearatie next extend this notion to transactions
as well (and nodes). Consider a nodg in a schedule. For this node we define usefulSchEvts as tha uni
of usefulSchEvts of all the memory operations in the pruretasn x. Formally,

S.usefulSchEvts(nx) = {( U S.use fulSchEvts(my))}
my €S.chrnPruned(nx)

In addition to causality, we also require that for every sation present in a sub-schedule, its terminal
operation is also present in it. This clearly indicates whdransaction completes.

2. Transaction termination: Consider a sub-scheduleS of a schedules. If the subS contains events
from a transactiony then it also contains the terminal operatiory gfin its set of events. Formally,
(tx € subS.evts = S.termOp(tx) € subS.evts)

It must be noted that by this characterization a transadtioa well-formed sub-schedule can have
its commit operation but none of its commit-write operasian the sub-schedule. The sub-schedule still
satisfies all the requirements of well-formedness. Fronsality completeness, we get the following lemma
on sub-schedules.

Lemma 35 Consider a schedul& in CNO. LetsubS be a sub-schedule ¢f that is causally complete.
Then, there exists a serial sub-schedsd@bS that:

1. Sub-Schedule Event Equivalence: The evendstdf and ssubS are the same.

2. schedule-partial-order Equivalence: For any two nodegs n that are peers in the computation tree
represented byubS if ny occurs beforer in subS thenny occurs beforer; in ssubS as well.
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3. lastWrite Equivalence: For all read operations the lasifés in subS and ssubS are the same.

Proof: These properties follow directly from the definition of CNSincesS is in CNO, we get that there
exists a serial schedulgS which has the same set of eventsSasRemoving all the events from the serial
schedule that are not ¥ubS, we get that the resulting sub-schedule, denoted:88 S, has the same set of
events asubS and is serial. Further it can be seen that schedule-partigr insubS is same asubSS.
This proves the conditions 1 and 2 above.

It must be noted that sincg is in CNO, the lastWrites for every read fhandS'S are the same. Since
subS is causally complete the lastWrite for every read operatibrubS is also insubS. Similarly the
lastWrite for every read operation efibSS is also insubSS. Further from the construction e.bSS, we
get that the lastWrite of every read4nbS.S is same as iBubS. This proves the condition 3 above. Hence,
the lemma follows. O

4.4 Abort Shielded Consistency

In SubSection4.1 we observed how an aborted transactioraffect the transactions following it. But
ideally we want an aborted transaction to have no effect ertrdmsactions that follow it. By looking for
a single serial schedule involving all transactions, dpdainits concurrency. In this section, we present
a class of schedulesbort-Shielded Consisteney ASG which define a correctness criterion in which an
aborted transaction does not affect the transactionsdhaifit. Then we preser€onflict Preserving Abort-
Shielded Consistenayr CP-ASGC a subset of ASC based on optConf. The membership of CP-A8C ca
tested in polynomial time. Using CP-ASC, we give the desiga scheduler CP-ASC-Sched for scheduling
interleaving nested transactions.

We consider the following schedul9 for illustrating this class.

Example 7 to : {tim‘h t()l, tog, tog, tfm},

to1 : {smo11 = ro11(x), smoi2 = wo12(y), sMo13 = we13(2), co1 }»

to2 : {smo21 = 1r021(b), smg22 = 1022(2), SMo23 = wo23(d), co2 }

to3 : {to31,t032, t033, o3},

tos1 : {smoz11 = r0311(y), o312 = wo312(b), ap31 },

tos2 : {smo321 = T0321(d), smoz22 = T0322(2), a032 }

to33 : {smo331 = 10331(Y), SM0332 = T0332(d), 510333 = W0333(7), C033 },

Schedule:
59 : 7011 (%) ros11 (y)wor2 (y)roz1 (b)wois (2)wii? (y)wor® (2)corroze (2)wosi2 (b) aos rosa1 (d)wozs (d)wis® (d)
coaro322(2)a03270331 () rossz (d)wosss (2)wiss° () cosswls” () cos

In this scheduleyos11 (y) reads fromt;,;;, whereaswii?(y) of to; writes iny. Butrgse(z) reads from
wgp(z) of tp1. Thus between two external-readstgf, we havety,'s updates. Hence there is no serial
schedule equivalent to it. As a result it is not in CNO. TheCupif serialization graph for this schedule is
shown in Figure 10 which shows th&# is not in CP-CNO.

Consider a schedulg with an aborted transactiary. If the aborted transaction should not affect the
transactions following it, thety should be dropped from the schedule while considering thecmess of
the remaining transactions. Generalizing this idea toladfri@d transactions, we construct a sub-schedule
which consists of events only from committed transacti@ub{transactions) and no event from any aborted

36



to

t .
tim’t fin

wngszﬂ(l“)
70331 (Y
rosn(2) )

Figure 9: Computation tree for Example 7

Vo1 Vo2
o1 Y032 V033

O—0O—

Vo3

Figure 10: The graph shows the CP-CNO conflict graph forS9
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transaction. It does not contain events from committedsaeations that are sub-transactions of aborted
transactions as well. Thus, the sub-schedule consist$ thieatvents front.prune(tg). For simplicity we
will denote this sub-schedule asmmitSubSchy. Then we check for the correctnesscofnmitSubSchyg.
This idea is similar to verifying the consistency of comurittransactions in virtual worlds consistency [8].
As explained in [5], it is necessary that each aborted timsat 4 also reads consistent values. To
ensure this, we construct a sub-schedul& oenoted agpre f SubSch 4 (pruned prefix sub-schedule) for
t 4. For this, we consider the prefix of all the events untik abort operation. From this prefix we construct
the sub-schedule by removing (1) events from transactimaisaborted earlier and (2) events of any aborted
sub-transaction of4. Thus, the sub-schedule consists of events from transactimt committed before
t 4 and events from live transactions, i.e., transactionsthae not yet terminated when is aborted. The
ordering among the events is same as in the original schédule
Finally, for each live transaction which includes the atmesoft 4, we add a commit operation after
t o's abort operation to the sub-schedule. But we do not adddherat-writes for these transactions. The
ordering among the commit operations is such that an antestammit operation is added only after all
its children’s commit operations (which are also ancesbdrisy) have been added. This ensures that well-
formedness of the sub-schedule is maintained. By addingdhanmit operations, we ensure that all the
transactions in the sub-schedule have a terminal operafiben we look for the correctness of this sub-
schedule. In59, for the aborted transactidpsy, ppref SubSchos; is:
ro11(2)ro311 (¥)wor2 (¥)ro21 (b)wors (2)wii? (y)wii (2)co1 rosz (2)wosi2 (b)ags1 cozcos-
Similarly the sub-schedules for every aborted transad#@mnbe constructed.

The set of pprefSubSchs for the schedtifeare,
commitSubSchy = ro11 () woi2(y)roz (b)wors (2)wi? (y)wii? (2)corrozz (2)wozs (d)wes® (d)cozrozs: (y)
ro332(d)wosss (x)wis’ (2)cosswis () cos
ppre fSubSchosi = ro11(z)ro311 (¥)wor2(y)ro21 (b)wors (2)wii? (y)wii? (z)co1r022 (2)wozi2 (b)aosi cozcos
ppre fSubSchozs = ro11 (z)wor2(y)roz1 (b)wors (2)woi? (y)wii? (2)co1mo22 (2) o321 (d)woos (d)wis® (d) coz
70322(2)@032C03

From the definition of pprefSubSch we can prove that ppreS8tb are causally complete stated in the

following lemma,
Lemma 36 For every aborted transactioty in S, the sub-schedulgpre f SubSch 4 is causally complete.

Proof: This follows from the construction of pprefSubSch. The sohedulepprefSubSch 4 contains
events either from transactions that committed befarer transactions that have not yet terminated. Thus,
all the events that affects, are inpprefSubSch 4. Hence it is causally complete. O

For a schedules, we define a set of well-formed sub-schedules denotedi&SchSet. It consists of
the following sub-schedules:

1. The sub-schedul@mmitSubSchg is in subSchSet . Formally,
(commitSubSchy € subSchSet)

2. For every aborted transaction in S, there exists a pprefSubSaiure f SubSch 4 in subSchSet,
(Vta : pprefSubSch € subSchSet)

Using subSchSet, we define a class of schedi@lesrt-Shielded Consistenoy ASCas:
Definition 6 A scheduleS belongs to ASC class if for every sub-scheduleS in the setsubSchSet of S,
there exists a serial sub-schedule:bS such that:
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1. Sub-Schedule Event Equivalence: The everdstdf and ssubS are the same. Formally,
(subS.evts = ssubS.evts)

2. schedule-partial-order Equivalence: For any two nodegs n that are peers in the computation tree
represented byubS if ny occurs beforeny in subS thenny occurs beforeny in ssubS as well.
Formally,

(tx : {ny,nz} C subS.children(tx) : (ny <sups nz) = (Ny <ssubs nz))

3. lastWrite Equivalence: For all read operations the lasif@s in subS and ssubS are the same. For-

mally,
(Vrx € subS : subS.lastWrite(rx) = ssubS.lastWrite(rx))

Similarly using pprefSubSch we define an extension to CP-CBlahflict Preserving Abort Shielded
Consistencyr CP-ASC It differs from the definition of the class ASC only in the edsas:

3. optConf Implication: If two memory operations smbS are in optConf then they are also in optConf
in ssubS. Formally,

(Vmy ,VYmyz : {my,mz} C subS.evts : (subS.optConf(my,mz) =
ssubS.optConf(my,mz)))

For this class, we get the following lemmas

Lemma 37 If a scheduleS is in CNO then it is also in ASC. Formally
(CNO C ASC)

Proof: Consider a schedulg in CNO. Then, from the definition of CNO we get that there exsstserial
scheduleS'S such that the lastWrites ¢f andS'S are the same. Thus for any sub-schedulgS of S that
is causally complete, there exists a serial sub-schedul&S that is serial and has the same lastWrites of

subS, by Lemma 35.
To prove thatS is also in ASC, we have to prove that,

e For commitSubSchy, there exists a serial sub-schedule, namelymitSerSubSchSSy: It must
be noted thatommitSubSchy is a sub-schedule & and is causally complete. Sinéeis in CNO,
from Lemma 35 we get that there exists a serial sub-schedulenitSerSubSchSSy.

e The sub-scheduleprefSubSch, for every aborted transaction,, has an equivalent serial sub-
schedule: From Lemma 36 we get that the sub-scheghilef SubSch 4 is causally complete. Hence
the reasoning for this case is same as the above case.

This completes the proof. O

It can be verified that schedul® is in ASC but not in CNO. Hence, the class CNO is a strict subket
ASC.

Lemma 38 If a scheduleS is in CP-ASC then it is also in ASC. Formally
(CP-ASCC ASC)
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Figure 11: The serialization graphs for the schedule in Exarple 7. This shows that this schedule is in
CP-ASC

Proof: The proof is similar to Theorem 17. O

It can be seen that verifying whethsris in CP-ASC or not can be done in polynomial time. From
the scheduley, the sub-schedulesmmitSubSchy andpprefSubSch 4 for every aborted transactian
are constructed. Then for each sub-schedule, the setiatizgraph is constructed using optGraphCons
algorithm based on optConf. If all the graphs constructedaayclic, then the scheduleis in CP-ASC.
The equivalent serial sub-schedules for the sub-scheduéemstructed from the graphs using the expander
algorithm.

For the schedul&9 of Example 7, the set of serigbrefSerSubSchs are as follows where
commitSerSubSchS Sy is the serial sub-schedule correspondingdmmitSubSchy,

commitSerSubSchSSo = tmtogtog = rou(x)wmg(y)wmg(z)wg? (y)wg%s(z)CmTogl (b)?“ogg(z)wogg(d)

w33 (d)coarosst (Y)ross2 (d)wosss (x)wiss: (z)cosswis® (x)cos

pprefSerSubSchosi = tostortoz = ros11(y)wosi2(b)aosi cosror1 (z)wor (y)wors (2)wii? (y)wii? (2)cor
7021 (b)7022(2)Co2

ppre fSerSubSchosa = tortostor = ro11(z)wor2 (y)wors (2)woi? (y)wii® (2)co1rosa1 (d)rosee (2)aos2cos
1021 (b)r022 (2)woes (d)wdz> (d)cos

The CP-ASC serialization graphs are shown in Figure 11.

45 CP-ASC-Sched: A scheduler based on CP-ASC

In this section we give the outline of a scheduler, called BsASC-Sched (CP-ASC Scheduler) which
implements the class CP-ASC. When a transaction wants th vede or commit, it sends the request
to the scheduler CP-ASC-Sched. The scheduler on receivieguest from a transaction, checks with
the previously committed and live transactions to see ifrégeiest maintains the consistency. If it does,
then CP-ASC-Sched allows the request to proceed. Otheitdses not allow the request to proceed and
aborts the corresponding transaction. Consistency iskelday adding the appropriate conflict edges in the
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conflict graph and checking for its acyclicity.
The scheduler maintains a conflict graph for each transactip denoted a€7p. The scheduler CP-
ASC-Sched implements CP-ASC using optGraphCons algofitlascribed in SubSection3.3) as follows:

1. On receiving a request from a transactignto invoke a new transactioty, a nodevg is created in
G p. Then CP-ASC-Sched adds completion edges from all the pééegghat have terminated earlier
tovg

2. Onreceiving a read request (d) from a transactionp, CP-ASC-Sched creates a nage for rx in
G p and adds completion edges from all the peer nodes;dhat completed before it. Lety’s last-
Write bewy,, wr, be a commit-write of a node;, (either a transaction or simple-memory operation)
andw;'s parent bet( (tg is same asp if wy, is a peer ofrx). Also letng be a peer node ofz, in
whose dSet is the read; is contained. Then CP-ASC-Sched adds a w-r conflict edge #oto v
in Gg. Then, the ready is stored as an external-read in all its ancestors stantorg fp ending at

nK.

3. On receiving a write requesty (d) from a transactiort p, CP-ASC-Sched adds a node in the
graph. Then it adds completion edges from all the peersyothat have completed before it. For
any peer node.z of wy that has an external-reag; (d), a r-w conflict edge is added frony, to vy
in Gp. Similarly for any peer node that has a commit-writes7-(d) a w-w conflict edge is added
from vp to vy

4. Transactiorip on receiving a request to commit from a transactign CP-ASC-Sched adds r-w and
w-w conflict edges w.r.t the commit-writes of (similar to step 3). It adds these edges betwegn
and its corresponding peersa#p.

After adding the edges, CP-ASC-Sched checks if these edgasafcycle inG,,. If no cycle is formed,
then the requested action of the transaction is permitteéder@ise, the requested action is not permitted.
The corresponding transactiop (or ¢tx) and all its live descendant transactions are aborted (dtessof
committed sub-transactions of the aborted transactiomireomchanged). The vertex and edgesofire
removed from the graph. All the readsip’s dSet that are stored as external-reads in its ancesters ar
removed. In this way, an aborted transaction does not afecbther transaction that follows it. With this
implementation, we get that any schedule accepted by CP-3@fed is also in CP-ASC.

We note that the scheduler can be implemented in a compldigiybuted manner. The different com-
ponents of the graph can be maintained by different prosedsis not necessary for any single process to
have the global information.

5 Discussion

5.1 A simpler Conflict Notion

Having described the idea of optConf, in this subsection Wedigcuss a variant to the conflict notion. As
discussed earlier (in SubSection2.3), a read operatiomezahfrom the value written by a write operation
only if the write is optVis to the read. Based on this obseéovatone can come up with a simpler notion of
conflict between any arbitrary read and a write operatioedasly on optVis. This conflict notion does not
concern if a given read operation is an external-read orWetcall such a conflict asgConf

For two memory operations. x, my in the dSets of peensa, ng, S.vCon f(mx(d), my (d)) is true if
mx occurs beforeny in S and one of the following conditions holds:
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1. r-w conflict: mx is a readrx (and not necessarily an external-readhifis dSet,my is a commit-
write wy of ng or

2. w-r conflict: m y is a commit-writew x of n4 andmy is a readry in ng's dSet or
3. w-w conflict: m x is a commit-writew x of n4 andmy is a commit-writewy of ng.

Based on this conflict definition we can define a class of sdkedalled ad/isible Conflict Preserving
Closed Nested Opacityr VCP-CNQ It is very similar to CP-CNO and differs only in condition 8 GP-
CNO definition, the conflict implication. It is defined as h&lo
vConf Implication: if two memory operations isiare in vConf then they are also in vConf$tb. Formally,

(Vmy,Ymyz : {my,mz} C S.evts : (SwConf(my,mz) = SS.wConf(my,mz)))

We denote this equivalence to such a serial schedul® as,. S.S). From the definitions of vConf and
optConf we get that in a given scheduie if two memory operationsn x, my are in optConf then they
are also in vConf i.eS.optConf(my,mz) = SwConf(my,mz). From this one can prove that if any
scheduleS is in VCP-CNO then it is also in CP-CNO i.éS € VCP-CNO) = (S € CP-CNO. But the
class VCP-CNO is not as generic as CP-CNO. There are somdudebavhich are in CP-CNO but not in
VCP-CNO. The following example illustrates it.

Example 8 Computation Tree:

to : {tinits to1, to2, to3, tpin }s

tor : {ro1(x), woi2(y), co1 },

toz2 : {ro21(d), wo2a (), wo23(y), coz }s

tos : {tos1,to32, sMo3s = wo33(2), co3 },

to31 : {smo311 = 10311(2), 50312 = Wo312(Y), Co31 },

toz2 : {smo321 = 10321 (Y), sM0322(T) = wo322(x), co32}

Schedule:

510 : ro11 () ro21 (d)wor2 (y)rosin (2)wlis (¥)cor wosia (y)wizi? (y)cos1 wozz () ros21 () wosea (2)wiss” ()
cozawozs (Y)wis” () wis? (y)coowoss (2) w3 (y)wis” (x)wo3® (z)cos

The corresponding computation tree is shown in Figure 12 [@ktWrites for all the reads in the above
example are:

{ro11(x) + Winit(x), 021 (d) : Winit (d), o311 (2) * Winit (2), ros21 (v) : w2 (y)}

The set of all optConfs in the above example:

{(rou1 (@), w3 (2)), (ro11 (@), w3 (2)), (ros11(2), woss(2)), (W™ (x), w3 (), (we31? (), ros21 (y)),
(wor* (y), w3 (), (wii? (y), wos' (v)), (wes? (y), wis' ()}

The set of all vConfs in the above example:

{(ro11 (), w32 (x)), (ro11 (), wis? (x)), (ros11(2), woss(2)), (w3 (@), w3 (), (WL (), Tos21 (y)),

(woi? (y), wos° (), (Wi (), w3 (y), (wos° (y), wos' (¥)), (wi*(y), ro321 (y)), (ros21 (y), wo3” (¥)) }
We have underlined the extra conflicts in this example. Wendidnention the conflicts caused by;;

andt g, in the above conflicts. We discussed optGraphCons algoiithitne previous section to verify if
a given schedulé' is in CP-CNO or not. This algorithm can be easily adapted tdyw# the scheduleS

is in VCP-CNO or not. This algorithm differs only in the waynftict edges are added. We add a conflict
edge when two memory operations are in vConf instead of afitGle call this algorithm as vGraphCons
algorithm.
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Figure 12: The computation tree for Example 8

Using optGraphCons algorithm and vGraphCons algorithm ererate the serialization graphs based
on both these conflicts. The graphs are shown in Figure 13.gfdgEhs show that the schedw&o0 is in
CP-CNO but not in VCP-CNO. As one can see from the conflict, sgts; (y) andwi3(y) are in vConf
but not in optConf. They cause the cycle betweggandngs in the graph of VCP-CNO. This shows that
VCP-CNO is a proper subset of CP-CNO. The optConf equivaerial schedule is:

ro11 () wor2 (1) wots (y)corroz1 (d)woaz () woas (y)whs? () w3 (y) coarosi1 (2)wosr2 (y)wist > (y) cos1 o321 (i)
w0322(9€)w8§’§2 (96)603211)033(2)?118??;1 (Z/)wggz (x)wg??j?’(z)cog

5.2 Schedule Partial Order

The second condition in the definitions of the classes CNOA®@ is schedule-partial-order. This con-
dition specifies that for any two peer nodes (transactiorsmple-memory operation), say -, nz, in the
scheduleS such thatny executes before, then in the corresponding serial schedslg, ny executes
beforen as well. But for some nested STM systems this may not be sarificThe application that gener-
ates the transactions might dictate the STM to be more sfrflitse systems might want that the condition
schedule-partial-order to be modified such that if any nedeccurs before any other transactiop in S,
then inSS alsony occurs beforerz. That is, the nodesy andnz need not be peers but any arbitrary
nodes. Thus the condition 2 of CNO can restated as follows:

schedule-partial-order Equivalence: For any two nadgsny in the computation tree represented $if
ny occurs beforev in S thenny occurs beforer; in S'S as well. Formally,

(S : {ny,nz} € Sinodes : (ny <g nz) = (ny <ss nz))

This madification can be made to the definitions of CP-CNO aReXSC. To accommodate this change
in the graph construction optGraphCons algorithm we matiéyway completion edges are added. Consider
the nodeswy, nz in S for which (ny <g nz). Lettp be a transaction such that it is the least common
ancestor ohy,nyz, i.e.,S.lca(ny,nz) = tp. Sinceny occured beforez in S, ny cannot be a ancestor of
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Graph based on
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Figure 13: These are the serialization graphs based on opt@band vConf for the schedule in Exam-
ple 8

nyz nor the vice-versa. Henaee cannot be the same as or nz but an ancestor to both. Thus will have
two childrenn iz andny such thaty isin S.dSet(ngr) andny is inT.dSet(ng). Now we add a completion
edge fromn i to ny in the graph. Then we check for acyclicity of the resultingmr. If the graph is acyclic
then in the resultant schedul®S generatedpy will be beforen i.e. ny <gs nz.

6 Conclusion

Composing simple transactions to build larger transaci@tems is extremely useful property which forms
the basis of modular programming. In STMs this can be acHi¢wemugh nesting of transactions. There
have been many implementations of nested transaction®ipast few years. But none of them provide
a precise and efficient formulation of the guarantees thatséed software transactional memory system
should provide.

Concurrent executions of transactions in Transactionainbtg are expected to ensure that aborted
transactions also, as the committed ones, read consistiergsv In addition, the property that aborted trans-
actions should not affect the consistency for the othersaations following it is desirable. Incorporating
these simple-sounding criteria has been non-trivial esendn-nested transactions as can be seen in recent
publications [5, 9, 3].

In this paper, we have considered these requirements feedloested transactions. We have also
defined new conflict-preserving classes that allow polymbmmiembership test, by means of constructing
conflict-graphs and checking acyclicity. Further, the dohfireserving classes have resulted in the elegant
design of a scheduler. The conflict-graph has separate amngofor each (parent) sub-transaction. Each
component can be maintained at a different site (processutrg the sub-transaction) autonomously and
the checking can be done in a distributed manner.

We have chosen a novel representation of schedules, naadding commit-writes, that facilitates easy
association of lastWrites for the read operations. We belieat this representation will be useful for dealing
with commit-pending transactions also. Our future workudes the study of how the above two properties
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manifest in executions with open nested transactions atidnein-transactional steps.
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