Syncope in East Cree: phonological or phonetic? 42nd Annual Algonquian Conference, St. John's, NL, Oct. 21-24, 2010 Carrie Dyck, Kelly Logan, Alethea Power, and Kevin Terry Department of Linguistics Memorial University of Newfoundland

Introduction^{*}

Syncope (vowel deletion) in East Cree can be analysed as a phonological or a phonetic process.

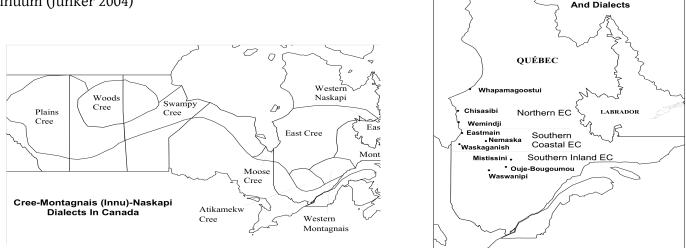
Determining the status of syncope has implications for (the learnability of) syllable and foot structure, and for the phonemic basis of the East Cree orthography.

Outline

Introduction	1
Outline	
1. Background	2
1.1 Situating East Cree	2
1.2 East Cree phonemes, syllable structure	2
1.3 Phonology vs. phonetics	
2. The problem: why the status of syncope matters	
3. Proposed solution	
3.1 Proposal	4
3.2 Predictions	6
4. Methodology	6
5. Findings	9
5.1 Syllable length	9
5.2 Consonant length	9
6. Conclusions1	1

^{*} Research for this paper was partially funded by SSHRC grants #410-2004-1836 (2004, Brittain, Dyck & Rose), #410-2008-0378 (2008, Brittain, Dyck, Rose & MacKenzie), and #856-2004-1028 (Junker, MacKenzie), as well as by the Memorial Undergraduate Career Experience Program.

1. Background


Figure 2 - Dialects of East Cree (Junker 2004)

East Cree Communities

1.1 Situating East Cree

Figure 1 - Cree-Montagnais-Naskapi dialect con-

tinuum (Junker 2004)

1.2 East Cree phonemes, syllable structure

• Similar in other Cree-Montagnais-Naskapi dialects; for Plains Cree, see Wolfart (1996).

1. Consonants¹

рt	ch [t∫]	k, k ^w
S	sh [∫]	h
m	n	
w	y	

2. Vowels

Неаvy			Light
î [i(:)] [u(:)] â [æ(:), ε(:)]	û	i [I, ɨ, ə]	u [ʊ] a [Ι, ε, ɨ, ə, Λ]

 $^{^{\}scriptscriptstyle 1}[w]$ and [y] are allophones of /u/ and /i/.

Ons	ets			Nuc	lei	Codas	Woi	d-fina	al app	endix
р	t s	t∫ ∫	k,k ^w h	î, i	û, u	s∫h	р	t s	t∫	k, k ^w h
m	n	•		â	i, a		m	n	•	
W	У						W	у		

3. Syllable structure (words without syncope); e.g. a.mis.k^w 'beaver'

1.3 Phonology vs. phonetics

Grammatical level	Diagnostics	Examples
Phonology (abstract units)	 Categorical rules Potential effects on other phonological units 	 V is either present or absent V presence/absence has consequences for syllable and foot structure V deletion -> resyllabification, Stray Erasure of Cs, etc.
Phonetic implementation (pronunciation)	 Gradient rules No effect on phonological units 	 Continuum in pronunciation between present and absent vowel Syllables are simply pronounced differently Progressively shorter [ə]s become [ə], then [h]

- Aspiration [^h] is in complementary distribution with schwa [ə] in a number of Salishan languages; conditioning factors include unstressed position, and location of [ə] between voiceless segments (Urbanczyk 1977:77-80).
- Schwa deletion in English is the endpoint of a phonetic reduction process, resulting from gestural overlap; conditioning factors include conditioning factors include unstressed position, and location of [ə] between voiceless segments, and speech rate (Beckman 1996; Davidson 2006).
- Voiceless vowels are aspiration with formant structure in Cayuga (Doherty 1993: 276-94), Comanche (Jakobson, Fant, and Halle 1967:52).

2. The problem: why the status of syncope matters

4. Syllable structure (words with syncope); e.g. am.sk^w?

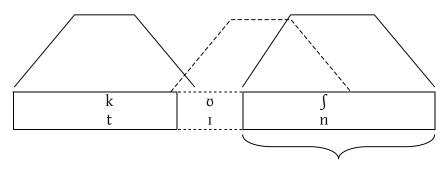
Ons	ets			Codas	Wor	'd-fina	ıl app	endix
р	t	t∫	k,k ^w	s∫ h	р	t	t∫	k, k ^w
	S	ſ	h			S	ſ	h
m	n				m	n		
W	у				W	у		

- Cannot characterize syllable structure, appendices, if phonological vowel deletion occurs.
- Paradigmatic alternations like English ['forəgıæf] vs. [fa'thɑɡrəfi] rare in EC.

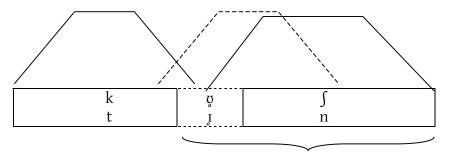
5. Lack of alternation in NEC paradigms

a.	nitihtutânânâtik	[ņ.t ^h .tu.taː.naː.ˈdaː.dɪk ^h]	I do it in the distance
b.	nitihtutânâtik	[n.t ^h .tu.taː.ˈnaː.dɪk ^h]	we do it in the distance
с.	nitihtutimwânânâtik	[¹ n.t ^h .tu.də.mwaː.naː.naː.dɪk ^h]	we do it in the distance (relational)
d.	nitihtutimwânâtik	['n.t ^h .tu.tə.mwaː.'naː.dık ^h]	you do it in the distance (relational)

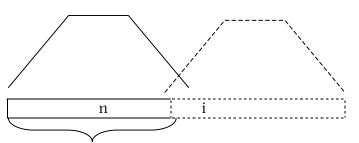
3. Proposed solution

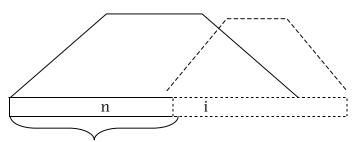

- Northern East Cree data suggest that syncope is a gradient, phonetic process.
- 6. NEC syncope transcriptions suggest gradient outcomes

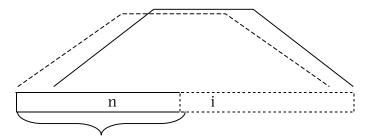
Or	thographic form	Phonetic realizations	Gloss
a.	is.pí.kun	[s .ˈpɨ.kʊn], [į s .ˈpɨ.kʊn]	taste
b.	<u>uh</u> .pí.nim	[x .ˈpɪn.nəm], [ʊh .ˈpɪn.nəm]	s/he lifts it
с.	<u>uh</u> .tâ.wî.mâu	[x .tæ.ˈwi.mæw], [yh .tæ.ˈwi.mæw]	his/her father
d.	<u>ush</u> .chî.shikw	[ʰʃ. ˈdʒiː.ʃɪkʷ], [ʊʃ. ˈdʒiː.ʃɪkʷ]	his / her eye


- Problem:
 - Reliance on impressionistic transcriptions;
 - Impressionistic transcriptions are suggestive, but provide only one type of evidence for the status of syncope.
- Solution: shed light on the status of syncope through
 - Acoustic analysis
 - Interpreted within the framework of Gestural or Articulatory Phonology (Browman & Goldstein 1990)
 - Plus, phonological units play a role. (This is a necessary departure from Articulatory Phonology, but is consistent with Cohn's Phonetic Implementation model.)

3.1 Proposal

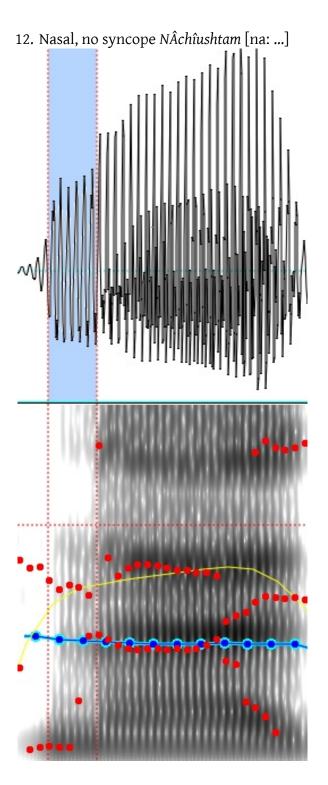

- Syncope is phonetic; the vowel nucleus is not deleted.
- Instead, gestural overlap occurs.
- In syncope environments, consonants in the syllable margin overlap the nucleus; sometimes, they completely eclipse the vocalic nucleus. (Beckman 1996; Coleman 1992, 1994, 2001; Davidson 2006; Dirksen and Coleman 1997; Goad et al. 2003).
- 7. Syllables with $[n, \int]$ in coda; no syncope [kof, km]

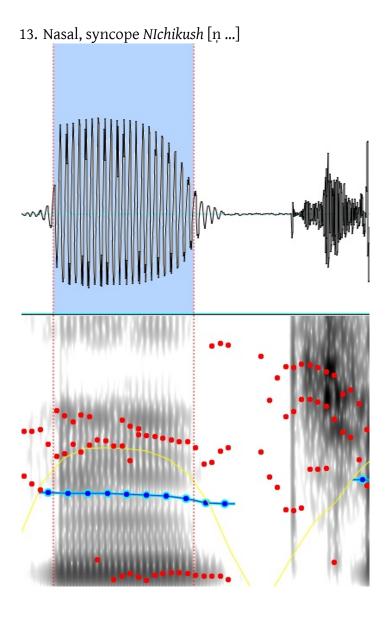

8. Syllables with [n, f] in coda; gestural overlap (syncope) [k ff, kn]

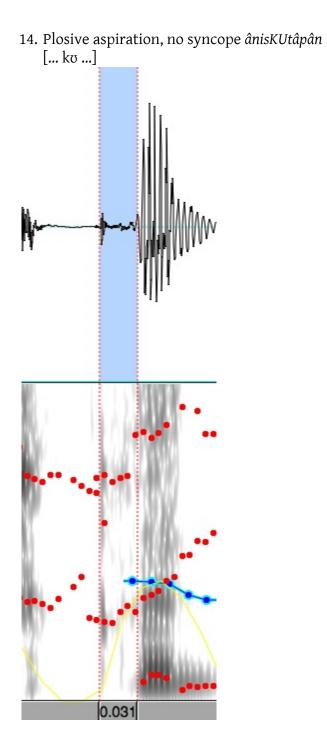

9. Syllables with [n] in onset, no syncope [n1]

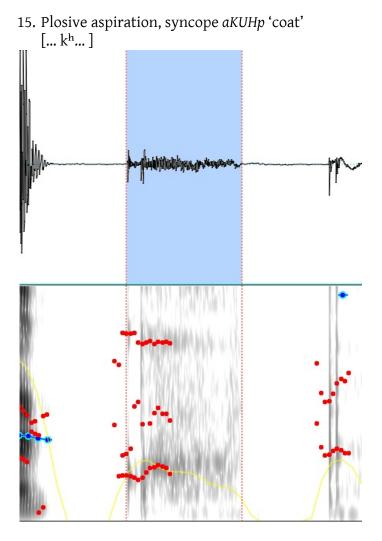
10. Syllables with [n] in onset, syncope [n]

11. Syllables with [n] in onset, syncope [n]


3.2 Predictions

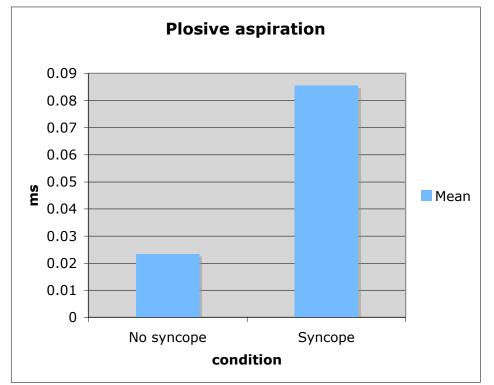

Phonological process	Phonetic process
Syllable nucleus deleted	Syllable nucleus remains
V properties such as DURATION erased	V properties such as DURATION unaffected, but V quality is eclipsed by surrounding C gestures
C properties such as DURATION unaffected	Cs can lengthen
Typically, stray Cs deleted	Alternatively, C duration unaffected, but timing of C onset and offset is affected


4. Methodology


- Word-list from one Southern East Cree speaker, collected for the http://www.east.cree.org website; the sound files can be heard at http://www.east.cree.org website; the sound files can be heard at http://www.east.cree.org website; the sound files can be heard at http://www.east.cree.org website; the sound files can be heard at http://www.ucs.mun.ca/~cdyck/eastcree.htm/SEC_sound_files_1.htm
- One speech rate: not fast.
- Measured length of
 - unelided CV syllables
 - elided CV and CVh syllables
- Measured length of non-word-final /n, m, s, J/ in onset and coda position (positions conflated for t-tests).
- Measured length of release for plosives /p, t, k/ in onset position.
- Segment selection identified in Praat (Boersma and Weenink 2009) by ear, waveform, spectrogram. Examples are provided below.

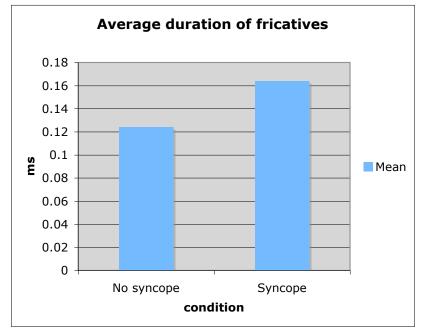
Syncope in East Cree: phonological or phonetic?

5. Findings

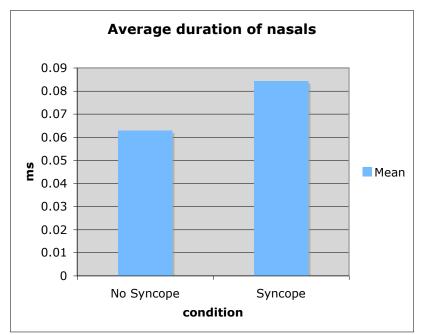

5.1 Syllable length

- No significant difference in length for non-elided CV syllables (M=0.14262, SD= 0.00132) and elided CV(h) syllables (M= 0.13659; SD= 0.00079); (p > 0.05)
- (Logan 2010): no significant difference in length between pitch-accented vowels in CV syllables (M= 0.0716, SD= 0.0032) and non-pitch-accented vowels in unelided CV syllables (M= 0.0647, SD= 0.0018); (p > 0.05).
- Syllables are the same length, regardless of whether they are pitch-accented, non-pitch-accented, or elided.

5.2 Consonant length


• Cs are significantly shorter in syllables with full vowels, and significantly longer in syllables with apparently elided vowels.

16. Length of release for non-word-final plosives



[•] The plosives /p,t,k/ in SEC have little aspiration when followed by a full vowel (M=0.0234, SD=0.0000), but are heavily aspirated in syllables that have undergone syncope (M=0.0855, SD=0.0013); (t(52)= 11.6619, p<0.01).

17. Duration of non-word-final fricatives

- The fricatives /s, ∫/ in SEC are shorter when followed by a full vowel (M= 0.1241, SD= 0.0007), than when followed by a deleted vowel (M= 0.1639, SD= 0.0016); (t(88)= 6.1061, p<0.01).
- Similarly, in English words like s'pose/suppose, "...the duration of $\hat{/s}$ / is significantly longer in tokens with elision than in tokens which exhibit the vowel..." (Davidson 2006:91).

18. Duration of non-word-final nasals

• The nasals /m, n/ in SEC are shorter when followed by a full vowel (M=0.0234, SD=0.0000), than when followed by a deleted vowel (M= 0.0628, SD= 0.0005); (t(103)= 4.1578, p<0.01).

6. Conclusions

19. Consonant length is in complementary distribution with full vowels (as in Salish; Urbanczyk 1997)

Syncope environment	Elsewhere	
C:	CV or VC	

- Against Compensatory Lengthening (CL; a phonological account)
 - CL: V shortens, coda C lengthens; CL never affects onsets
 - In EC, [m,n] never in codas in words without syncope
 - Yet [m,n] lengthen, eclipsing the following nucleus:
 - kânichî [ˈkaːntʃiː] 'sweater'
 - nishikî [nˈʃiki:] 'my skin'
- EC syncope is phonetic process: increased gestural overlap in syncope environment, with no effect on syllable structure
- Syllable structure is unaffected; evidence: syllable duration is the same, regardless of environment.

Syncope in East Cree: phonological or phonetic?

References

- Beckman, M. 1996. When is a syllable not a syllable? In Otake, Cutler (ed), *Phonological structure and language processing: cross-linguistic studies*. New York: Mouton de Gruyter. 95-123.
- Boersma, Paul & David Weenink. 2009. Praat: Doing Phonetics by Computer (Version 5.1; http://www.praat.org/). Computer program. http://www.praat.org/.
- Browman, Catherine P. and Louis Goldstein, 1990. Tiers in articulatory phonology, with some implications for casual speech. In John Kingston and Mary E. Beckman (eds), *Papers in Laboratory Phonology I: Between the Grammar and Physics of Speech*, Cambridge: Cambridge University Press. 341-376.
- Cohn, A. 1993. Nasalisation in English: phonology or phonetics. *Phonology* 10(1). 43-82.
- Coleman, John, 1992. The phonetic interpretation of headed phonological structures containing overlapping constituents, *Phonology* 9. 1-44.
- Coleman, John, 1994. Polysyllabic words in the YorkTalk synthesis system. In Patricia A. Keating (ed), *Phonological Structure and Phonetic Form: Papers in Laboratory Phonology III*, Cambridge: Cambridge University Press. 293-324.
- Coleman, John. 2001. The phonetics and phonology of Tashlhiyt Berber syllabic consonants, *Transactions of the Philological Society* 99:1, 29-64
- Davidson, Lisa. 2006. Schwa elision in fast speech: segmental deletion or gestural overlap? *Phonetica* (63): 79-112.
- Dirksen, Arthur and John Coleman, 1997. All-prosodic synthesis architecture. In Jan P. H. van Santen, Richard W. Sproat, Joseph P. Olive and Julia Hirschberg (eds), *Progress in Speech Synthesis*. New York: Springer-Verlag. 91-108.
- Doherty, Brian. 1993. The acoustic-phonetic correlates of Cayuga word-accent. PhD dissertation, Harvard University.
- Goad, Heather and Kathleen Brannen. 2003. Phonetic Evidence for Phonological Structure in Syllabification. In Jeroen van de Weijer, Vincent van Heuven & Harry van der Hulst (eds.), *The Phonological Spectrum, Vol. 2*, 3-30. Amsterdam: John Benjamins.
- Jakobson, Roman, C. Gunnar M. Fant, and Morris Halle. 1967. Preliminaries to Speech Analysis: The Distinctive Features and Their Correlates. Cambridge MA: MIT Press.
- Junker, M-O. (ed.) (2004). Cree-Innu Linguistic Atlas. <u>www.atlas-ling.ca</u>.
- Urbanczyk, Suzanne. 1997. *Patterns of Reduplication in Lushootseed*. PhD thesis. University of Massachusetts Amherst.
- Wolfart, Christoph H. 1996. Sketch of Cree, an Algonquian language. In Handbook of North American Indians. *Volume 17. Languages*, ed. Ives Goddard. Washington: Smithsonian Institution, 390-439.