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Inference of the Genetic Architecture Underlying
BMI and Height with the Use of 20,240 Sibling Pairs

Gibran Hemani,1,2 Jian Yang,1,2 Anna Vinkhuyzen,2 Joseph E. Powell,1,2 Gonneke Willemsen,3,4

Jouke-Jan Hottenga,4,5 Abdel Abdellaoui,3,5 Massimo Mangino,6 Ana M. Valdes,6 Sarah E. Medland,7

Pamela A. Madden,8 Andrew C. Heath,8 Anjali K. Henders,7 Dale R. Nyholt,7 Eco J.C. de Geus,3,4,5

Patrik K.E. Magnusson,9 Erik Ingelsson,9,10 Grant W. Montgomery,7 Timothy D. Spector,6

Dorret I. Boomsma,3,4,5 Nancy L. Pedersen,9 Nicholas G. Martin,7 and Peter M. Visscher1,2,*

Evidence that complex traits are highly polygenic has been presented by population-based genome-wide association studies (GWASs)

through the identification of many significant variants, as well as by family-based de novo sequencing studies indicating that several

traits have a large mutational target size. Here, using a third study design, we show results consistent with extreme polygenicity for

body mass index (BMI) and height. On a sample of 20,240 siblings (from 9,570 nuclear families), we used a within-family method to

obtain narrow-sense heritability estimates of 0.42 (SE ¼ 0.17, p ¼ 0.01) and 0.69 (SE ¼ 0.14, p ¼ 6 3 10�7) for BMI and height, respec-

tively, after adjusting for covariates. The genomic inflation factors from locus-specific linkage analysis were 1.69 (SE¼ 0.21, p¼ 0.04) for

BMI and 2.18 (SE ¼ 0.21, p ¼ 2 3 10�10) for height. This inflation is free of confounding and congruent with polygenicity, consistent

with observations of ever-increasing genomic-inflation factors from GWASs with large sample sizes, implying that those signals are due

to true genetic signals across the genome rather than population stratification.We also demonstrate that the distribution of the observed

test statistics is consistent with both rare and common variants underlying a polygenic architecture and that previous reports of linkage

signals in complex traits are probably a consequence of polygenic architecture rather than the segregation of variants with large effects.

The convergent empirical evidence from GWASs, de novo studies, and within-family segregation implies that family-based sequencing

studies for complex traits require very large sample sizes because the effects of causal variants are small on average.
Introduction

Widely regarded as a growing epidemic,1 obesity is known

to be a precursor to social2,3 and psychological4 problems,

as well as a plethora of physiological conditions.5 Manag-

ing such a problem requires knowledge of the genetic

and environmental contributors to the disease. Body

mass index (BMI), a commonly used proxy for quantifying

obesity, predicts the risk of consequential etiology.6 In

addition to accurately estimating the heritability ðh2Þ of

BMI, understanding the genetic architecture that belies

genetic variation is also ofmajor importance for gene-map-

ping strategies, drug development, epidemiology, and the

future of genomic medicine. In this paper, we infer the

genetic architecture of BMI and height through calculating

heritability, the relative contribution of rare and common

variants, and the extent to which these traits are polygenic.

Crucially, we make inferences by using within-family

identity-by-descent (IBD) estimation because methods

using this framework are neither prone to confounding

due to population stratification nor dependent upon

strong modeling assumptions.

One reason that knowledge of a trait’s underlying

genetic architecture is important is that it might dictate
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the optimal study design for detecting genetic variants.

Clues about the relative contribution of rare and common

variants can be leveraged from information between esti-

mates of h2 and the estimation of ‘‘chip heritability’’ (h2
C,

the proportion of phenotypic variation captured by SNPs

on a SNP chip). The chip heritability of BMI is estimated

to be much lower for BMI ðh2
C ¼ 0:17Þ 7 than for height

ðh2
C ¼ 0:45Þ.7–10 Supposing that BMI and height had simi-

larly large true heritabilities (as is often shown from twin

studies),11,12 given that SNP chips capture the effects of

common variants better than the effects of rare variants,8

we might infer a larger contribution of rare variants influ-

encing BMI. However, previous heritability estimates for

BMI have varied enormously.13 Indeed, based on a recent

review,11 a meta-analysis of 81 twin studies led to an esti-

mate of 0.75, whereas a meta-analysis of 25 non-twin fam-

ily-based studies, performed on sample sizes in the low

thousands, gave an estimate of 0.46. Conversely, with esti-

mates typically in the range of 0.7–0.9, pedigree studies on

the heritability of height are more consistent with twin-

based studies.12,14

To date, far more variants have been discovered to be

robustly associated with height than with BMI, even

though similar samples size have been used.15,16 One
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possible explanation for this is a difference in heritability.

For example, if we assume the same number of genetic var-

iants for both traits, the average effect size will be smaller

in BMI if its heritability is lower, and therefore power will

be reduced for the same sample size. Power is proportional

to the square of the effect size, so if effect sizes are on

average halved, then four times the sample size is required

for detection. Alternatively, causal variants for BMI could

be at lower frequencies in the population than those for

height, also leading to decreased power in genome-wide

association studies (GWASs) as a result of reduced linkage

disequilibrium (LD) between causal variants and geno-

typed SNPs. It is important to distinguish between

these hypotheses because it quantifies howmuch variation

has not yet been accounted for by past experimental

designs.

Here, using amethod developed to avoid dependence on

modeling assumptions regarding between-family variance

by using the realized genetic sharing between siblings17 to

estimate heritability, we report heritability estimates of

0.42 for BMI and 0.69 for height on a sample of 20,240

quasi-independent sibling pairs (QISPs). This is at the lower

end of the scale of previous estimates and is consistent

with estimates resulting from family-based studies. Using

within-family IBD methods, we also demonstrate, while

being agnostic about allele frequencies, that there is strong

evidence of extreme polygenicity in BMI and height.

We demonstrate how the consequence of this finding

can explain why linkage analyses of complex traits over

the past two decades seldom replicate.18,19 Finally, we use

these data to provide empirical evidence that genomic

inflation (the overall elevation of test statistics across all

loci) increases with increased sample size as a result of

polygenic variation. This is an important finding that fore-

casts that, even after adequate correction for population

stratification, genomic inflation in very large association

studies is likely to occur when real genetic signals are

enriched as a result of increasing power with increasing

sample size.15

Material and Methods

Genotyping and Phenotyping
From five separate cohorts, we collected 20,240 QISPs who had

data on dense (minimum 300,000) SNP genotypes, height mea-

surements, weight measurements, age at time of measurements,

and gender. The term ‘‘quasi-independent’’ refers to the fact that

although there was often more than one sibling pair per family,

each sibling pair was treated as independent. Extensive descrip-

tions of each cohort have been provided previously, and they are

summarized in Table S1, available online. In brief, we obtained

9,585 QISPs from the Queensland Institute of Medical Research

(QIMR),20 4,607 from the Framingham Heart Study,21 2,722

from the Swedish Twin Registry’s TWINGENE data set,22,23 1,819

from the Netherland Twin Registry,24,25 and 1,507 from the UK

Twin Registry’s TWINSUK data set.26

All individuals in the study were of European ancestry and over

the age of 18 years old. BMI and height were adjusted with a linear
866 The American Journal of Human Genetics 93, 865–875, Novemb
model for a number of covariates (see Table S2). BMI was also

adjusted for between-sex variance. Clinical or self-reported mea-

surements of height and weight were used for calculating BMI

by means of the standard formula of raw weight values (kg) over

the square of raw height values (m). The data-collection proce-

dures followed were in accordance with the ethical standards of

the respective responsible committees on human experimenta-

tion (institutional and national), and proper informed consent

was obtained.

Heritability Estimates
Marker-level IBD was calculated for each QISP with the Merlin

software package27 (see volta plots, Figure S1). For each of the

five cohorts, we selected full siblings and dizygotic twins and

pruned SNPs so that LD was constrained to r2 < 0.05 to ensure

that markers used for estimating IBD were in linkage equilibrium.

Minor allele frequency was greater than 0.2 for maximizing

information from the retained SNPs, leaving approximately

20,000 SNPs per cohort (Table S1). As can be seen in Figure S1,

this SNP density was sufficiently high to produce accurate

estimates of IBD. Subsequently, chromosome-wide IBD was calcu-

lated by approximate integration over the marker-wise IBD status

for all markers across a chromosome on the basis of their genetic

position:

q̂j ¼
Xi¼1

i%m

1

2
di;iþ1ðxi þ xiþ1Þ;

where di;iþ1 is the genetic distance between marker i and iþ 1 and

xi is the estimate of IBD status at marker i.

Subsequently, genome-wide IBD, q̂, was estimated as

q̂ ¼ 1

L

Xj¼1

j%22

ljq̂j;

where lj is the genetic length of chromosome j and L ¼ P
lj. The

genome-wide IBD matrix between QISPs was constructed as a

block diagonal 2n 3 2nmatrix (A), where n is the number of QISPs,

and each block was a 2 3 2 diagonal matrix with off-diagonal ele-

ments being qi coefficients for the i
th QISP. The common-environ-

ment matrix (C) was also 2n3 2n with 2 3 2 diagonal blocks

whose off-diagonal elements fixed to 1. The phenotype was then

modeled with linear mixed models of the form

y ¼ Xbþ g þ w þ e;

where y is the vector of phenotypes, X is the designmatrix of fixed

effects, b is the estimate of fixed effects, g is the vector of genetic

values, w is the vector of common environmental effects, and

e is the vector of residual values. The genetic variance was calcu-

lated as s2
A ¼ varðgÞ and h2 ¼ s2

A=s
2
P, where s2

P is the phenotypic

variance. The partitioning of heritability estimates across

chromosomes was achieved by the construction of genetic-rela-

tionship matrices ðAjÞ for each chromosome ðjÞ from chromo-

some-wide IBD estimates ðq̂jÞ and then via a joint analysis of

the form

y ¼ Xbþ
Xj¼1

j%22

gj þ w þ e:

These variance components can be calculated in 22 separate

models or in a single model comprising 22 components
er 7, 2013



(each model also fits C). The correlation between the h2 estimates

of each chromosome from these two approaches was high (r ¼
0.98), as would be expected given that the chromosome-

wide IBD values were uncorrelated. All restricted maximum likeli-

hood (REML) estimates were performed with the GCTA software

package.28

Simplifying the sibling relationship structure into QISPs instead

of having a block diagonal structure where each block represents

the siblings in one family is computationally more efficient with

the use of very large sample sizes and has now been implemented

as an option (–reml-wfam) in GCTA. Using simulation, we showed

that the estimates remain unbiased (Figure S2).

Linkage Analysis
IBD estimates at a 0.1 cM grid were obtained for each sibling pair

with the Merlin software package,27 and linkage analysis was

performed directly from these estimates. We used the Visscher-

Hopper (VH) method29,30 to regress IBD estimates because it is a

good approximation of themaximum-likelihood variance-compo-

nent method implemented in Merlin (Figure S3). In brief, the VH

method performs a within-locus meta-analysis for linkage tests

performed with two orthogonal similarity metrics, the sum of

squares of the difference in phenotypes, and the sum of squares

of the sum of phenotypes between the siblings. Because it has

been demonstrated to improve power in linkage analysis,31 246

and 254QISPs were excluded for having pD > pD þ 4SDðpDÞ, where

pD is the squared difference of the sibling phenotypes, for BMI and

height, respectively.

Meta-analysis
The linkage analysis can be performed as described above with

the use of all 20,240 QISPs or via a meta-analysis from the

summary statistics of linkage analyses performed on each cohort

separately. For a particular genetic position, the effect can be

calculated as

bM ¼
P bk

s2
kP
1
s2
k

;

for which the SE is

sM ¼ 1P
1
sk

;

where k ¼ f1.5g represents each cohort. The strong correla-

tion between the meta-analysis and the combined analysis

(Figure S4) is evidence that linkage signals are of genetic origin.

Permutations
Permutation analysis is a useful approach for developing a

threshold that allows for nonindependence between multiple

tests.32 In this instance, we performed permutations for each

trait to generate thresholds to demonstrate that LOD scores from

the linkage analysis were more extreme than expected under the

null model of no genetic variation. For each permutation, pairwise

elements of the arrays of y1 and y2 were shuffled together, such

that the pairs of sibling phenotypes remained the same but no

longer corresponded to their IBD values. Then the entire linkage

analysis was performed with the permuted phenotypes, where

we no longer expected a biological link between genotype and

phenotype. This was performed 500 times for each trait.
The American
Simulations
The outcome of the linkage analysis showed that there were LOD

scores exceeding traditional thresholds, as well as elevated LOD

scores across the genome. We performed simulations to under-

stand what kind of genetic architecture might manifest such a

result, whereby we used the genotypes used for calculating IBD

in the 20,240 siblings to simulate phenotypes representative of a

range of different architectures.

By changing the distribution of effects of common SNPs across

the genome, we generated different models. The simulations were

performed with all LD-pruned SNPs. Phenotypes were simulated

such that every SNP had a background effect sampled from either

distribution A, bA � NðmA;s2
AÞ, or distribution B, bB � NðmB;s2

BÞ.
For example, using this framework, if we were to simulate one

quantitative trait locus (QTL) per chromosome, then sA ¼ 0 and

sB ¼ 1, where one SNP is selected at random from each chromo-

some to be a QTL and has an effect sampled from distribution B.

For simulating a uniform polygenic effect, sA ¼ 1 and sB ¼ 0

such that each SNP has an effect. For simulating clustering of

effects, sA ¼ 0 and sB ¼ 1, and SNPs falling under distribution B

are chosen such that there are on average p cM between regions

for an effect drawn from distribution B and each region is q cM

in length. In this case, p ¼ 50 and q ¼ 5 (results of the simulations

are insensitive to the values chosen for parameters p and q [data

not shown]). An example of the distribution of SNP effects can

be seen in Figure S5. From the n3m dimensional matrix X, where

n is the number of individuals, m is the number of SNPs with an

effect, and each element Xij˛f0;1;2g represents the number of

minor alleles for individual i at SNP j, genetic scores were produced

for each individual i as

Gi ¼
X

bjXij:

The rare-effect models assumed that a single SNP was respon-

sible for the entire genetic variance within a family without occur-

ring in any other individuals in the population. Thus, for each

SNP, EðVGÞ ¼ h2=20;240. For simulating a uniform polygenic

model, a SNP j was chosen at random from the panel of ~20,000

SNPs for each of the 20,240 QISPs, and thus for an individual in

QISP i�, his or her genetic score was defined simply as

Gi� ¼ bi�
�
Xi� j �Xj

��
sj:

For simulating a rare model with clustered genetic effects, SNPs

across the genome were sampled with nonuniform probabilities,

such that there were on average p cM between regions with length

q cM and these regions were given a 103 higher probability of

being sampled than any other regions. In this case, the values

were set to p ¼ 50 and q ¼ 5.

Genetic scores were generated within cohorts, and then final

phenotypes were produced after individuals from all cohorts

were combined. Nongenetic variance was simulated by the sam-

pling of ei � Nð0;VEÞ, where VE ¼ ðVG=h
2Þ � VG.

For each model detailed above, simulations were performed

for h2 ¼ f0:42;0:69g. Simulations were performed for each of the

five cohorts and for the combined sample. Each model 3 h2 3 n

combination was repeated 500 times.
A Note on Within-Family Analysis
Full details on the use of within-family analysis and its advantages

are outlined elsewhere,17,33 but a brief explanation follows. Given

that siblings are phenotypically correlated, one can ask, ‘‘Of the
Journal of Human Genetics 93, 865–875, November 7, 2013 867



phenotypic similarity of two siblings, what proportion is attrib-

uted to the actual genomic proportion that they share by

descent’’? If a trait is heritable, then sibling pairs who have

higher-than-average genome-wide IBD will be phenotypically

more similar to each other. This is in essence equivalent to a link-

age analysis, but in this case we use genome-wide IBD instead of

IBD at a particular locus. We obtain a realized estimate of the total

amount of genetic similarity between siblings through direct

calculation of genome-wide IBD. Thus, in our ACE model, the

phenotypic similarity between siblings is partitioned into a pro-

portion of this covariance that is captured by the realized

genome-wide IBD between siblings (in the A component) and a

proportion that is not (C). In the extreme case that none of the sib-

ling phenotypic correlation can be explained by genome sharing

by descent, the A component would be zero and the C component

would reflect the observed phenotypic similarity. Conversely, if all

phenotypic correlation between siblings can be explained by how

much of their genome is shared by descent, then the C component

would be zero.

The only information that can contribute to the A component is

the realized genome-wide IBD between siblings, and because this

is simply determined by random recombination events at meiosis,

it is immune to confounding from population stratification.

Unlike other experimental designs, this approach requires no

assumptions regarding the common environmental structure of

complex pedigrees, and cohort-specific effects will be uncorrelated

with realized genome-wide IBD estimates. We performed two sim-

ulations to demonstrate this.

The purpose of the first simulation was to demonstrate that, un-

like association studies, within-family linkage analysis is immune

to population stratification. We simulated an extreme case of

population stratification in 20,000 QISPs from our five different

cohorts; h2 was set to 0 (no genetic effects), sibling correlation

was set to r ¼ 0.3, and a large cohort effect was simulated, which

explained 20% of phenotypic variance. We then performed

genome-wide linkage analysis as previously described. In associa-

tion studies, any ancestry-informative loci between cohorts would

be correlated with the cohort effect, leading to spurious associa-

tion signals and therefore a genomic-inflation factor (also known

as a genomic-control [GC] factor, lGC) significantly greater than 1.

However, because the cohort effect was uncorrelated with the

sibling IBD estimate, we observed no genomic inflation with the

within-family linkage design (100 replicates, mean(lGC) ¼ 1.02,

SE(lGC) ¼ 0.015, p ¼ 0.11, Figure S6).

The purpose of the second simulation was to demonstrate that

genetic heterogeneity between cohorts does not lead to biased

heritability estimates, nor does it lead to genomic inflation in a

within-family linkage analysis. Using 20,000 QISPs from five

different cohorts and ~20,000 LD-pruned SNPs, we simulated phe-

notypes such that each genetic effect was present in only one

cohort. To do this, we constructed the phenotypes by simulating

genetic effects at every SNP on chromosomes 1, 6, 11, 16, and

21 for individuals in the Framingham cohort, on chromosomes

2, 7, 12, 17, and 22 for the TWINGENE cohort, on chromosomes

3, 8, 13, and 18 for the TwinsUK cohort, on chromosomes 4, 9, 14,

and 19 for the Netherlands Twin Registry cohort, and on chromo-

somes 5, 10, 15, and 20 for the QIMR cohort. Genetic effects were

then scaled such that the phenotypes for each cohort had the

same heritability. This simulation represents the most extreme

form of genetic heterogeneity through genotype-cohort interac-

tion. Empirical heritability estimates of the simulated phenotypes

were obtained for 100 replicates for each simulated value of h2 ¼
868 The American Journal of Human Genetics 93, 865–875, Novemb
{0, 0.25, 0.5, 0.75, 1}. We observed unbiased estimates from these

simulations (Figure S7), as expected from a within-family design.

We also performed a linkage analysis for each simulated pheno-

type for each individual cohort and also for the cohorts combined.

Because there was no overlap of genetic effects between cohorts,

combining the data did not lead to increased genomic inflation

(Figure S8).

Despite its advantages for genetic analysis, it is important to note

that themaindrawbackofusing awithin-familydesign is its depen-

dence on very large sample sizes. This is because the SD of IBD

sharing is relatively small (e.g., ~0.037 for full siblings), and there-

fore large sample sizes are required for obtaining precise estimates.
Results

Heritability Estimates for Height and BMI

Theory predicts that the expected proportion of alleles

shared identically by descent between siblings has a

mean of 0.5 and a SD of 0.039.17 We used ~20,000 SNPs

in linkage equilibrium to estimate IBD for 20,240 sibling

pairs from 9,577 nuclear families and obtained a SD of

0.037 (Figure S9). Because there is variation around the

expected value of 0.5, we could relate the proportion of

phenotypic similarity to the amount of genetic similarity

between siblings. We partitioned phenotypic variance of

BMI and height in additive genetic (A), common environ-

ment (C), and specific environment (E) variance compo-

nents to apportion phenotypic variance into genetic and

nongenetic causes. Considering that the variance for

BMI is larger in females than in males, we adjusted BMI

for a number of covariates (Table S2) in two gender groups

separately. Height was also adjusted for the covariates in

Table S2. Heritability was then estimated with REML,28

giving h2 ¼ 0.42 (SE 0.17) for BMI and 0.69 (SE 0.14) for

height (Table 1). Because age of measurement has a signif-

icant effect on BMI, the inclusion of siblings who were

measured at different ages might have reduced the herita-

bility estimate because they had a lower correlation

(Figure S10). We calculated the heritability for BMI on

17,039 QISPs who were measured within 10 years of

each other, resulting in h2 ¼ 0.35 (SE 0.18), demonstrating

that a possible age by genotype interaction does not cause

a deflation of h2.

Under a polygenic model of genetic architecture, we

expect the heritability contribution of a chromosome to

be proportional to its size.7,33 We quantified this by parti-

tioning the genetic variation, such that for each chro-

mosome, a variance component was composed from the

respective chromosome-wide coefficients of IBD sharing.

Figure S11 shows a positive relationship between chromo-

some size and genetic variance for height (r ¼ 0.38, p ¼
0.049) and BMI (r ¼ 0.08, p ¼ 0.469). The lack of statis-

tical significance for BMI is expected even under the

assumption that the association is real because a lower

heritability combined with larger sampling variance

of IBD coefficients for individual chromosomes entails

larger SEs.17
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Table 1. Summary of Estimates of BMI and Height Heritabilities from Realized Relationships for All Cohorts

Cohort QISPs r h2 (SE) c2 (SE) ra h2 (SE)b c2 (SE)c

QIMR 9,585 0.26 0.76 (0.20) 0.00 (0.10) 0.39 0.80 (0.22) 0.00 (0.10)

Framingham Heart study 4,607 0.30 0.00 (0.34) 0.27 (0.17) 0.47 0.72 (0.28) 0.10 (0.14)

TWINGENE 2,722 0.24 0.00 (0.47) 0.24 (0.24) 0.50 0.75 (0.35) 0.12 (0.18)

Netherlands Twin Registry 1,819 0.37 0.78 (0.47) 0.00 (0.23) 0.48 0.00 (0.42) 0.49 (0.22)

TwinsUK 1,507 0.41 0.31 (0.55) 0.25 (0.28) 0.54 0.56 (0.46) 0.26 (0.23)

Total 20,240 0.29 0.42 (0.17) 0.10 (0.08) 0.44 0.69 (0.14) 0.08 (0.07)

aCorrelation between phenotypes of QISPs after adjustment for fixed effects.
bHeritability estimates.
cProportion of the phenotypic variance attributed to common environmental variance.
Polygenic Variation Causes Genomic Inflation in

Linkage Studies

Using these data, we were able to perform a linkage study

on both height and BMI.We constructed quantile-quantile

(Q-Q) plots of the test statistics for BMI and height and

observed increasing genomic-inflation factors (lGC) as

sample size increased (Figure 1, Figure 2, and Figure S12).

For the combined analysis, lGC ¼ 1.65 and 2.18 for BMI

and height, respectively. The lower inflation of test statis-

tics for BMI than for height is consistent with the fact

that BMI has a lower heritability. The inflation of test sta-

tistics in population-based studies such as GWASs could

arise from either truly associated variants or population

stratification.34 However, because within-family analysis

depends only on the degree of genetic sharing among sib-

lings, all signals from this linkage analysis must necessarily

be of genetic origin. We also observed that the linkage re-

sults from the combined data set shown here were consis-

tent with a meta-analysis performed on separate linkage

analyses of the five independent cohorts (Figure S4), ruling
Figure 1. Q-Q Plots of Linkage Analyses
For each cohort (left five panels), as well as the combined data set an
Q-Q plots were produced for both BMI (top) and height (bottom) to d
expectation (x ¼ y line). 95% confidence intervals are shaded in gray
are pruned to be 20 cM apart for reducing correlations between test
cohorts are TwinsUK, Netherlands Twin Registry, TWINGENE, Frami
from the combined analysis, and the seventh panel represents the m

The American
out variance heterogeneity between cohorts as a source of

test-statistic inflation.

To explore the possible genetic architecture behind this

genomic inflation, we used the genetic data from the

20,240 QISPs to simulate phenotypes by using different

underlying models of genetic architecture. Polygenic

models of evenly distributed variants or clustered variants,

as well as an oligogenic model (one QTL per chromosome),

were tested and generated with the use of either common

or rare variants (Figure S5).We recorded twomeasurements

per simulation, the proportion of loci with heritability

estimates greater than zero, Pðh2
m > 0Þ, and the maximum

LOD score from each simulation. Under the null hypothe-

sis of no genetic variation, we expect Pðh2
m > 0Þ ¼ 0:5

because the sampling variance of h2
m estimates about zero

is symmetric. Our original linkage scan gave results of

0.61 (empirical SE ¼ 0.04, p ¼ 0.006) for BMI and 0.68

(SE ¼ 0.04, p ¼ 1.6 3 10�5) for height (Figure 2 and

Figure S13). The results from the simulation study, shown

in Figure 3, demonstrate that these values are consistent
d the p values from the meta-analysis (the two right-most panels),
emonstrate overall genomic inflation as being a departure from the
, and GC values for each cell represent genomic inflation. Markers
s (for Q-Q plots on all markers, see Figure S12). From left to right,
ngham, and QIMR. The sixth panel (n ¼ 20,240) shows the results
eta-analysis of all five cohorts.
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Figure 2. Proportion of Markers with Positive Heritability Estimates Pðh2
m > 0Þ

For each cohort (five bars to the left) and for the combined sample set (bar furthest to the right), an independent permutation analysis
was performed such that the entire family of tests was rerun with QISP phenotypes randomly relabeled from QISP genomic IBD scores.
Thus, each box-and-whisker plot represents the distribution of Pðh2

m > 0Þ values from the 100 permutations per cohort; red points
represent the Pðh2

m > 0Þ achieved in the true linkage scans.
with expectations from polygenic models when sample

size gets sufficiently large. We observed no difference

between linkage results for different simulated polygenic

models and those from the actual linkage analysis on

BMI and height.

Polygenic Variation Creates the Illusion of Large

Effects in Linkage Studies

QTLs discovered for complex traits through linkage studies

have a long history of poor replication rates in indepen-

dent samples,18 and this might provide evidence of an

underlying polygenic architecture. Using the traditional

genome-wide threshold of LOD ¼ 3.0, our linkage analysis

detected one significant region for BMI (chromosome 20)

and two for height (chromosomes 5 and 15), but these
870 The American Journal of Human Genetics 93, 865–875, Novemb
were not significant at the more stringent threshold of

LOD ¼ 3.335 (Figure 4 and Figure S14). We confirmed

by permutation analysis32 that these linkage peaks were

genome-wide significant when tested against the null

model of no genetic variation anywhere in the genome

(p < 0.05) (Figure S15). Using the polygenic simulation

results, we then derived empirical significance thresholds

under the null model of underlying polygenic variation

(Figure S16). At these thresholds, the linkage peaks were

not significant at the experiment-wide level (p ¼ 0.21 for

BMI and 0.18 for height, Figure 4).

Association studies have not previously reported sig-

nificant signals on chromosome 20 for BMI,36 whereas

numerous reports of weak signals from linkage studies

have implicated almost the entire genome37 (including
er 7, 2013



Figure 3. Simulations of Genetic Effect Models
Expected results for various polygenic models are compared to observed results from true linkage analyses. MaximumLOD scores (y axis)
from linkage scans are plotted against Pðh2

m > 0Þ (x axis). Rows of panels correspond to sample sizes, representing different cohort sizes
(top five rows) and the combined data set (bottom row). Columns of panels correspond to simulated h2; the left column represents BMI,
and the right column represents height. Each model 3 sample size 3 heritability combination was replicated 100 times, and error bars
represent 95% confidence intervals. Genetic models are as follows: Null, no genetic effects; C1, oligogenic where a single common QTL
exists per chromosome; C2, polygenic with common SNPs uniformly distributed throughout the genome; C3, polygenic with common
SNPs clustering across the genome; R1, polygenic with rare SNPs uniformly distributed throughout the genome; and R2, polygenic with
rare SNPs clustering across the genome. It is shown that different polygenic architectures have nearly identical properties in linkage anal-
ysis and that they are consistent with the results for BMI and height.
chromosome 2038) to have some involvement (Figure S17).

Our simulations indicate that under a polygenic model of

genetic architecture, where no large effect exists, we expect

to find signals of LOD > 3.3 at experiment-wide error

levels of a ¼ 0.12 and a ¼ 0.20 for BMI and height, respec-

tively. Moreover, at the more traditionally used threshold

of LOD ¼ 3.0, we expect error levels of a ¼ 0.20 and a ¼
0.32 for BMI and height, respectively. This is evidence

that the observation of seemingly large effects in linkage

studies is actually more likely to be a property of a highly

polygenic underlying architecture.
The American
Discussion

How we design future studies to uncover genetic variants

will depend on the underlying genetic architecture of the

trait in question.39 There is mounting evidence that

many of the traits that we call complex are highly poly-

genic. One example is from GWASs, where robustly associ-

ated common variants are increasingly found for BMI and

height as the sample size increases, suggesting that there

exist many variants of small effect for these traits.15,16 It

is possible to use results from such studies to estimate the
Journal of Human Genetics 93, 865–875, November 7, 2013 871



Figure 4. Linkage Analysis for BMI and Height
LOD scores for BMI across all autosomes are shown on the top row, and height is shown on the bottom row. The traditional threshold of
LOD ¼ 3.3 is depicted by solid lines, and the more stringent empirical threshold based on simulations of polygenic models is shown by
dotted lines (a ¼ 0.05, see Figure S16). Blue points represent GWAS hits from the GIANT study (different shades of blue correspond to
different log10 p values). There is no correlation between linkage signals and GWAS signals (Figure S18).
total number of variants contributing to the trait’s genetic

variance.40–42 Another line of evidence comes from

sequencing studies, where it has been shown that an in-

crease in de novo mutations leads to an increased risk of

schizophrenia and autism, indicating a large mutational

target across the genome.43,44 In this study, we present

evidence of polygenicity from the observed genome-wide

inflation of BMI and height test statistics that are free

from confounding.

Heritability estimates for height are relatively consistent

across studies and between different experimental designs.

However, the estimates of heritability for BMI vary widely;

on average, they are reported to be 0.75 in twin-based

studies and 0.46 in non-twin pedigree studies.11 All

pedigree designs rely on inference from the resemblance

between relatives and therefore depend on modeling

assumptions,45–47 such as the extent of shared environ-

mental factors between different types of relatives. Here,

we used a method that utilizes the realized sharing of

genetic variation between siblings to avoid any depen-

dence on modeling assumptions17 to estimate heritability

of BMI and height from 20,240 QISPs at 0.42 (SE ¼ 0.17,

p ¼ 0.01) and 0.69 (SE ¼ 0.14, p ¼ 6 3 10�7), respectively.

A recent study using IBD estimates derived from long-

range phased genotype data in an extended genealogy

also reported estimates of h2 ¼ 0.42 for BMI and 0.69 for

height, further supporting that h2 for BMI and height

was likely to be overestimated in previous twin and family

studies.48

From these results, we can make some inference on the

relative contribution of rare and common variants to

BMI. ‘‘Chip heritability’’ estimates ðh2
c Þ, the proportion of

phenotypic variance explained by common SNPs, are typi-

cally much lower in BMI than in height. The discrepancy

between h2
c and h2 is likely to arise when causal variants

and observed SNPs are in insufficient LD, hypothesized

to be caused in part by the difference in allele-frequency
872 The American Journal of Human Genetics 93, 865–875, Novemb
distributions between the causal variants and the observed

SNPs.8 For example, from our estimate of heritability for

height, the ratio h2
c =h

2 ¼ 0:46=0:69 ¼ 0:67 suggests that

rare variants contribute relatively little to the genetic

variance for height,8 given that only one-third of heritabil-

ity is missing. However, h2
c ¼ 0:17 7 for BMI, and because

previous h2 estimates have been variable,11,13 the variance

proportion that is said to be missing is not easily deter-

mined. Under the assumption that the heritability of

BMI is approximately the same as that of height, then a

substantial proportion ð1� ð0:17=0:69Þ ¼ 0:75Þ of the

genetic variance is not captured by common SNPs. How-

ever, in this study we report an estimate of h2 ¼ 0:42 for

BMI, which falls at the lower end of the range of previous

estimates. This suggests that the role of rare variants might

be of lesser importance for BMI than was previously sug-

gested7 (i.e., ð0:17=0:42Þ ¼ 0:40 of the variance is captured

by common SNPs). An important consequence of this

finding is that association studies for BMI are likely to

have lower power to identify causal variants than are

equally sized studies for height where the heritability is

higher. Recent results from large-scale meta-analyses sup-

port this conclusion (32 associations in BMI versus 180

in height in similarly sized studies49).

Our study also provides an interpretation of the past two

decades of linkage studies. Linkage analysis has a long his-

tory of reporting significant signals (given traditional

thresholds of LOD¼ 3.050 or 3.335) that mostly fail to repli-

cate in independent studies.18,37,51 This might be caused

by a variety of phenomena, for example, rare variants

with large effects that are unique to a single family will

not be replicated in other cohorts.39 However, we have

demonstrated that when there is no such large effect,

one can still observe significant signals given a polygenic

model of genetic architecture. Thus, a parsimonious expla-

nation for linkage signals that cannot be replicated is that

the thresholds cited above are not sufficiently stringent
er 7, 2013



because they assume a null model of no genetic effects.52

One way that nonreplicating linkage signals could arise

from a highly polygenic architecture is that through

random sampling, a chromosomal region can have multi-

ple alleles of small effect shared identically by descent

across families on one sample by chance, and this stochas-

tic occurrence is unlikely to be repeated in an independent

sample. Through our simulation studies, we have shown

that under the null model of genome-wide polygenic

variation, the traditionally used thresholds are too low to

detect a region with a large effect and should be set depen-

dent upon trait heritability (e.g., LOD ¼ 3.7 for h2 ¼ 0.42

and LOD ¼ 4.1 for h2 ¼ 0.69). We also suggest that using

the term ‘‘false positive’’ is not strictly accurate when dis-

cussing previously reported signals that failed to replicate

because they are indeed likely to be caused by genetic vari-

ation. However, they are unlikely to signify the presence of

a genomic region with a single large effect, which is often

the goal of linkage analysis.

In summary, using results from our large SNP-based link-

age study to date, we have provided evidence that BMI and

height are highly polygenic, that heritability of BMI might

have been previously overestimated, and that the failure

of most linkage studies to replicate or lead to identified

causal variants can be reconciled by the polygenic nature

of complex traits.
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