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Abstract: 
We have shown previously that a feed-forward, back propagation neural network model based on composite n-grams can predict 
normalized signal strengths of a microarray based DNA sequencing experiment.   The  microarray  comprises  a  4xN  set of  25-base  
single-stranded  DNA  molecule  (”oligos”),  specific for  each  of  the  four  possible  bases  (A,  C,  G,  or  T)  for  Ade- nine,  Cytosine,  
Guanine and Thymine respectively at each of N positions in the experimental DNA. Strength of binding between reference oligos and 
experimental DNA varies according to base complementarity and the strongest signal in any quartet should `call the base` at that position.  
Variation  in base composition  of  and  (or)  order  within  oligos  can  affect  accuracy  and  (or)  confidence  of  base  calls.  To  evaluate  
the  effect of  order,  we  present  oligos  as  n-gram  neural  input  vectors  of degree 3 and measure their performance.  Microarray signal 
intensity data were divided into training, validation and testing sets.   Regression values obtained were >99.80% overall with very low 
mean square errors that transform to high best validation performance values.  Pattern recognition results showed high  percentage  
confusion  matrix  values  along  the  diagonal and  receiver  operating  characteristic  curves  were  clustered  in the  upper  left  corner,  
both  indices  of  good  predictive  performance.   Higher order n-grams are expected to produce even better predictions. 
 
Keywords:  Neural networks, n-grams, Performance, Regression values, Confusion matrix, Receiver Operating Characteristic curves. 

 
Background: 
DNA  sequences  are  strings  of  hundreds  to  millions  of  four  
nitrogenous bases (Adenine, Cytosine, Guanine and Thymine) 
represented by  the  letters  A,C,G,  and  T  respectively.   
Representation  of  these strings  as  numerical  values  enables  the  
application  of  powerful  dig- ital  signal  processing  techniques. 
Desirable  properties  of  a  DNA numerical  representations  and  
some  examples  are  given  in  [3,  15]. N-gram method was first 
introduced by C.E Shannon in 1948 [9]. Neural network learning 
methods provide a robust approach to approximation of real-
valued, discrete-valued and vector-valued target functions, [12] 
such as numerical DNA data.  The study of artificial neural  
networks  has  been  inspired  by  the  observation  that  biological  
learning  systems  are  built  of  very  complex  webs  of  
interconnected neurons, [10, 11, 12], which communicate through a 
large set of interconnections assigned variable strengths (weights) 

in which the learned information is stored, [13].  Each neuron 
computes a weighted sum of its y input signals.  The activation 
function for neurons is the sigmoid function defined in [12] as σ(y) 
= 1/1-e-y. 
 
where  y  is  the  weighted  sum  of  the  inputs.   The  output  of  
the  sigmoid  function  ranges  from  0  to  1,  increasing  
monotonically  with its  input  and  the  weights  of  the  
interconnections  between  the  different  neurons  are  adjusted  
during  the  training  process  to  achieve a desired  input/output  
mapping.  Artificial  Neural  Networks studies have been used for 
computational analysis of human DNA sequence [14], single base 
pair discrimination of terminal mismatches [16], biological 
phenomena through computational intelligence [17], human donor  
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and  acceptor  sites  prediction  [18],  coding  region  recognition 
and  gene  identification  [19],  predicting  transmembrane  
domains  of proteins  [20]  and  the  prediction  of  nucleotide  
sequences  using  genomic  signals  [21],  [22].   We previously [15] 
used mainly 1-gram, 2-gram and their composition to predict 
normalized signal strengths from a DNA-sequencing microarray. 
Here, numerical data from an Affymetrix [1] DNA re-sequencing 
experiment  are  normalized  and  partitioned  into  training,  
testing  and validation set within a Matlab [2] neural network with 
4, 16, 64 for mono-, di-, and tri-nucleotide strings respectively in 
the input layer. The  influence  of  the  length  of  oligo nucleotide  
in  the  nucleotide  hybridization  intensity  experiments  [23]  is  
examined  by  replacement of mono-, di- and tri nucleotide strings 
with their respective n-gram equivalents.  The n-gram ratios for 
mono-, di- and tri nucleotides are shown in Table   1, Table   2 and 
Table   3 respectively.  The results with 1-gram and 2-gram and 
their composition have been discussed in [15].   We  advance  the  
results  obtained  previously  by  examining the  influence  of  3-
grams  on  overall  performance  of  our  predictions based  on  the  
data  evaluation  functions.   We examine the effect of the different 
number of neurons in the hidden layer on optimal prediction 
performance.  The  output  node  layer  has  4  nodes  reflecting our  
choice  of  sequence  signals  to  predict.   The schematics of DNA 
neural network architecture are shown in Figure 1.   The DNA 
sequence data are first converted by a sequence encoding schema 
into neural network input vectors (ratios of n-gram).  The neural 
network then predicts those normalized intensities according to the 
sequence information embedded in the neural interconnections 
after network training. 
 

 
Figure 1: A neural network system for signal intensity prediction. The  
DNA  sequence  data  are  first  converted  into  n-gram  profiles  as input 
vectors. The neural network then predicts the normalized signal intensities 
after network training. 
 
 

Data evaluation functions: 
In [15], we explained the concept of performance and regression 
values.  We also examined their results using 1-gram, 2-gram and 
their composition.  We now check for consistency of the results 
with the inclusion of 3-gram using two other Matlab neural 
network data evaluation functions.  Performance and regression 
values are also considered with this inclusion. 
 
Confusion Matrix: 
This is a 2-dimensional matrix with a row and column for each 
class for training, validation, testing and all datasets.  Each matrix 
element shows the number of test examples for which the actual 
class is the row and the predicted class is the column.  Good results 
correspond to large numbers down the main diagonal.   The  
diagonal  (green  cells)  in  each table  show  the  number  of  cases  
that  were  correctly  classified. The off-diagonal (red cells) show 
the misclassified cases.  Blue cells  in  the  bottom  right  show  the  
total  percent  of  correctly classified cases (in green text) and the 
total percent of misclassified cases (in red text). Figure 2 shows a 
confusion matrix with 4 tables each displaying the  network  
response  for  the  training,  validation,  testing  and all datasets. 
 

 
Figure 2:  A typical confusion matrix showing various types of errors that 
occurred for the final trained network. 
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Figure 3: A typical ROC plot 
 
Receiver Operating Characteristic, ROC: 
ROC curve shown in  Figure  3  is  another  form  of  visualization  
and  analysis  of the  quality  of  our  network.   It  is  a  plot  of  
true  positive  rate (sensitivity)  versus  the  false  positive  rate  (1-
specificity).  The colored  lines  in  each  axis  represent  the  ROC  
curves  for  each category  of  the  problem. The ROC always goes 
through the origin and through (1, 1). A good test would show 
points in the upper-left corner. 
 
Methodology: 
We adopt the same methods as in [15]. The  dataset  is  from  the 
Cambridge Reference Sequence with ascension number 
NC−012920 and  is  made  of  15,453  rows  and  6  columns  where  
3  of  the  columns are the n-grams for n= 1,2, 3 and the other 4 
columns represent the normalized intensities for Adenine, 
Cytosine, Guanine and Thymine. We extract every 26th line of the 
dataset which reduces the dataset to 594 rows (lines) respectively.   
3-gram  are  used  independently  to predict the normalized 
intensities for the four nucleotides ACGT and results obtained are 
compared with those obtained in [15].  We also use  1-3- gram,  2-3-
gram  and  1-2-3-gram  to  repeat  the  analysis  and compare with 
earlier results. 
 
The algorithmic steps for our data manipulation are as follows: 
 

[1] Compute n-gram profiles of the DNA data set using Python 
programming language. 

[2] Calculate the nucleotide, di nucleotide and tri nucleotide 
frequencies of these profiles. 

[3] Do substitution of the nucleotides, di nucleotides and tri 
nucleotide strings with their respective frequencies. Do the 
following on the intensity profiles: 

[4] Calculate the highest and lowest value along each row. 
[5] Do normalization along each row using N(i) = (yi – min) /( 

max – min), where yi  is the actual value of the attribute i, max 
and min are the maximum and minimum values along each 
row. 

[6] Repeat step 5 for every row of intensity profile.  
[7] Combine results obtained from step 1 to step 6. 
[8] Extract every 26th line (to avoid subsequence overlap and 

possibility of random match) from the data set after the 
operations above. 

[9] Use   Matlab   subroutines   to   get   performance   plots, 
regression values,   confusion matrices and Receiver 
operating characteristic curves. 

 
The flowchart for the steps is shown in Figure 4. 
 

 
Figure 4:  Algorithmic flowchart for computing n-gram profiles and doing 
normalization on the DNA sequence 
 
Table 1: The four nucleotides and their percentages (ratios) 

Nucleotides     Percentage 
A                    0.31 
C                    0.31 
G                    0.13 
T                    0.25 
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Table 2: The sixteen di nucleotides and their percentages (ratios) 
Di nucleotides    Percentage    Di nucleotide    Percentage 
AA              0.10             GA             0.04 
AC              0.09             GC             0.04 
AG              0.05             GG             0.03 
AT              0.07             GT             0.03 
CA              0.09             TA             0.08 
CC              0.11             TC              0.0 
CG              0.03             TG             0.03 
CT              0.09             TT             0.06 
 
Table 3: The 64 tri nucleotides and their percentages (ratios) 

Tri nucleotides Percentage Tri nucleotides Percentage 
AAA 0.032 CAA 0.028 
AAC 0.03 CAC 0.027 
AAG 0.013 CAG 0.012 
AAT 0.023 CAT 0.025 
ACA 0.026 CCA 0.027 
ACC 0.031 CCC 0.036 
ACG 0.007 CCG 0.008 
ACT 0.025 CCT 0.034 
AGA 0.011 CGA 0.008 
AGC 0.017 CGC 0.009 
AGG 0.011 CGG 0.005 
AGT 0.01 CGT 0.005 
ATA 0.022 CTA 0.032 
ATC 0.022 CTC 0.023 
ATG 0.01 CTG 0.011 
ATT 0.02 CTT 0.02 
GAA 0.012 TAA 0.025 
GAC 0.01 TAC 0.023 
GAG 0.008 TAG 0.016 
GAT 0.007 TAT 0.02 
GCA 0.012 TCA 0.025 
GCC 0.017 TCC 0.022 
GCG 0.003 TCG 0.007 
GCT 0.011 TCT 0.019 
GGA 0.007 TGA 0.012 
GGC 0.01 TGC 0.007 
GGG 0.004 TGG 0.006 
GGT 0.005 TGT 0.006 
GTA 0.009 TTA 0.02 
GTC 0.006 TTC 0.019 
GTG 0.003 TTG 0.007 
GTT 0.006 TTT 0.015 

 
Table 4: Best validation performance (Bvp) and regression values with 1-3-gram with 
varying number of neurons in the hidden layer 

No. of neurons Regression values Best validation performance 
20 0.99081 0.002713 
25 0.99135 0.002539 
30 0.99115 0.00247 
40 0.99117 0.002275 

Averages 0.99112 0.002499 
 
Table 5: Best validation performance (Bvp) and regression values with 2-3-gram with 
varying number of neurons in the hidden layer 

No. of neurons Regression values Best validation performance 
20 0.99171 0.002199 
25 0.99181 0.002192 
30 0.99183 0.002263 
40 0.99207 0.00236 

Averages 0.9918 0.002253 
 
 
 
 

 
Table 6: Best performance and regression values with 1-2-3-gram with varying 
number of neurons in the hidden layer 

No. of neurons Regression values Best validation performance 
20 0.99171 0.002199 
25 0.99181 0.002192 
30 0.99183 0.002263 
40 0.99207 0.00236 

Averages 0.9918 0.002253 
 
Table 7:  Regression  and  best  validation  performance  (Bvp)  values for  1-2-gram  
and  1-3-gram  with  varying  number  of  neurons  in the hidden layer 

No. of neurons R-values Bvp values 
 1-2-gram 1-3-gram 1-2-gram 1-3-gram 
20 0.9884 0.99081 0.002849 0.002713 
25 0.98914 0.99135 0.002666 0.002539 
30 0.98874 0.99115 0.00313 0.00247 
40 0.98587 0.99117 0.002525 0.002275 
Average 0.98803 0.99112 0.002793 0.002499 

 
Table  8:  Regression  and  best  validation  performance  (Bvp)  values for  1-2-gram  
and  2-3-gram  with  varying  number  of  neurons  in  the hidden layer 

No. of neurons R-values Bvp values 
 1-2-gram 2-3-gram 1-2-gram 2-3-gram 
20 0.9884 0.99171 0.002849 0.002199 
25 0.98914 0.99181 0.002666 0.002192 
30 0.98874 0.99183 0.00313 0.002263 
40 0.98587 0.99207 0.002525 0.00236 

 
Table 9:  Regression and best validation performance values for 1-2- gram and 1-2-3-
gram with varying number of neurons in the hidden layer 

No. of neurons R-values  Bvp values  
 1-2-gram 1-2-3-gram 1-2-gram 1-2-3-gram 
20 0.9884 0.99185 0.002849 0.00208 
25 0.98914 0.99187 0.002666 0.00203 
30 0.98874 0.99191 0.00313 0.00213 
40 0.98587 0.992 0.002525 0.00213 
Average 0.98803 0.99191 0.002793 0.002056 

 
Table 10:  Confusion matrix values and ROC curves dynamics for 1-3 gram 

No. of neurons Overall CM values % Bvp  ROC curve dynamics 
20 91.2 0.04239 Upper left corner 
25 97.1 0.025996 Upper left corner 
30 99.8 0.007321 Upper left corner 
40 99.8 0.003937 Upper left corner 

 
Results: 
Neural network regression value R, determine how robust the 
prediction is.  Higher R value and a smaller MSE in terms of 
performance imply good prediction.  We  compare  the  
performances  of  the  networks with 1-3-gram, 2-3-gram and 1-2-3-
gram with different number of  neurons  in  the  hidden  layer  
using  the  Matlab  regression  toolkit. These results are compared 
with those obtained in [15].  Again, the number  of  neurons  in  the  
hidden  layer  has  been  varied  between  20 and  40  with  step  
size  5  as  a  matter  of  choice  and  hopefully  to  find the optimal 
network architecture. Table 7 gives a summary of the regression 
and performance values extracted from 1-2-gram and 1-3-gram 
with variable number of neurons in the hidden layer. Table 8 gives 
a summary of the regression and performance values extracted 
from 1-2-gram and 2-3-gram with variable number of neurons in 
the hidden layer. Table 9 gives a summary of the regression and 
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performance values extracted from 1 2-gram and 1-2-3-gram with 
variable number of neurons in the hidden layer. Tables  1,  2 and  3 
show the percentages (ratios) from Affymetrix [1]  dataset  of  
nucleotides,  di nucleotides  and  tri nucleotides  respectively. 
Using pattern recognition toolkit to investigate the behavior of our 
predictions in terms of confusion matrices (CM) and receiver 
operating characteristic (ROC) curves, the results with 1-3-gram are 
shown in Table 10. The  results  with  2-3-gram  and  1-2-3-gram  
(not  shown)  are  not  as good as those obtained using 1-3-gram. 
 
Discussion: 
As noted in [15], the absolute set comprises 4×594 values, where 
the four values are the absolute signal strengths of the bases 
[ACGT] on each of 594 lines. Absolute  signal  strengths  are  
normalized  to  values  between  0.0  −  1.0,  from  which  the  
Neural  Network/n-gram process  predicts  values  (≥  0.0 - 1.0).  
The  Prediction  set  correctly identifies  the  highest  value  (1.0)  in  
the  normalized  set  for  all  594 lines, which is, of course, the 
highest value and therefore the correct base call in the absolute set.  
This is not necessarily a trivial result, as the predictive function 
must accommodate all targets in the 4 x 594 sets.   Using regression 
toolkit, we observed that the values in Tables   4, 5 and 6 were 
generally better than the results obtained in [15] where 1-2-gram 
composition of the n-grams were used.  This is  in  part  due  to  the  
increment  in  the  n-grams  from  2  (two)  to  3 (three).   A  look  at  
Table 7,  Table 8  and  Table 9 shows  reduction  in  the  validation  
error  and  increment  in  the  regression  value when we compare 
the respective n-gram compositions. The average best validation 
performance (Bvp) and regression values obtained in [15] for 1-2- 
gram was 0.002793 which translated to 99.72% accuracy with 
average regression value of 0.98803.  These numbers decreased 
(increased) to 0.002499 and 0.99112 when we used the 1-3-gram 
com- position.   Again,  a  comparison  of  1-2-gram  and  2-3-gram  
showed  a decrease in best validation performance to 0.002253 and 
increase in the  regression  value  to  0.99180  for  the  2-3-gram.   In  
the  case  of  1-2-3 gram, the best validation performance value 
again decreased to 0.002056  or  26.4%  when  compared  with  the  
value  obtained  with  1- 2-gram.  The regression value also 
increased to 0.99191 from 0.98803 obtained with 1-2-gram.  This is 
again due to the increment in the n-gram number.   The  use  of  
pattern  recognition  toolkit  to  investigate the behaviour of the 
confusion matrices and receiver operating characteristic (ROC) 
curves showed general confusion matrices value of 99.8% using 40 
neurons in the hidden as shown in Table   10 and the  points  in  
ROC  curve  lying  in  the  upper  left  corner. These are good signs 
of near expected results. 
 
Conclusion: 
We can predict the signal intensities via their normalized values 
from Affymetrix data using artificial neural network based n-gram 
model. It seems the higher the n-gram value and appropriate 
composition, the better the predictive accuracy of the model. The 
usage of higher n-gram values and their different compositions are 

considered in this paper.  Efforts could be made to increase the 
number of n-grams to see if better results can be obtained which 
we envisage to be true.   An  effort  could  also  be  made  to  get  
optimal number of neurons in the hidden layer that give maximal 
regression values  and  lower  mean  square  error.  An increase in 
regression value to say 0.999 is indicative of a much better 
prediction with its attendant low mean square errors which is a 
measure of performance. As  we  increase  the  n-grams,  we  can  
also  check  which  composition of the n-grams give better results.  
Greater confusion matrix values along  the  diagonal  and  ROC  
curves  points  in  the  upper  most  left corner can also be achieved 
for better classification. 
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