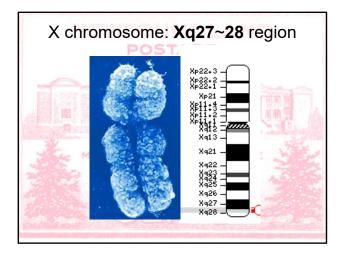
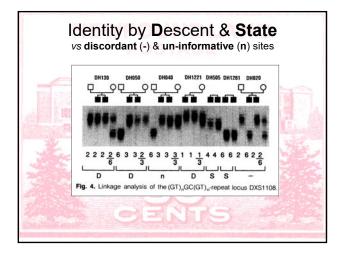
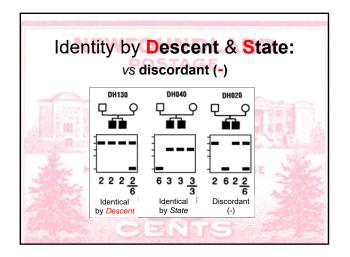

Introduction to QTL (Quantitative Trait Loci) & LOD analysis Steven M. Carr / Biol 4241 / Winter 2016

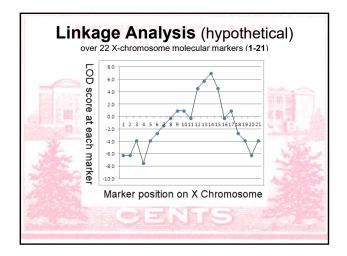

- Quantitative Trait Loci: contribution of multiple genes to a single trait
- Linkage between phenotypic trait & genotype markers X-linked trait

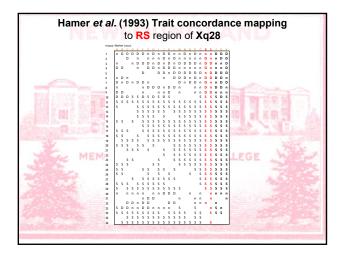
•


- => restricts search to X chromosome
 Cf. GWAS (Genome-Wide Association Study)
- Pedigree analysis of pairs of brothers
- Concordance of X: do brothers inherit same X from mother? Identity by Descent [D]: same X allele
 - . Discordance [n]: different X alleles
- Logarithm of Odds (LOD) calculation
 - Given two very unlikely outcomes, which is less unlikely / more likely ?
- Is the difference statistically significant?
- Disclaimer: The experimental design and numerical data in Hamer et al. (1993) are presented as an example of a simplified QTL / Pedigree / LOD analysis. No opinion is expressed as to any implications of the results. Readers are referred to the MS itself for the author's conclusions.

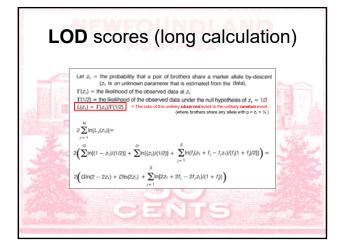


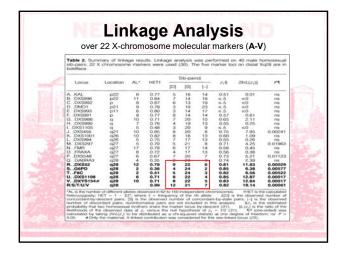


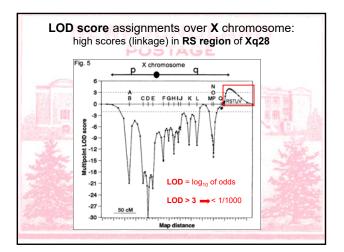




C	onsid		sider 21 pos						s there Lini	ane?	
_			50000551701	TICHIN			avea ra	105.1	S ancie Enn		
Cancardan	Concordant	ratio	odds ratio (0.8)	100	CNI Sq	Marker	Concordant	non- Concordant	odds ratio (0.8)	LOD	
0	40	0.00	0.00	-15.9	40.00	A	16	24	0.00	-6.3	
2	38	0.05	0.00	-14.7	32.40	в	16	24	0.00	-6.3	
4	36	0.11	0.00	-13.5	25.60	C	20	20	0.00	-3.9	
6	34	0.18	0.00	-12.3	19.60	D	14	26	0.00	-7.5	
8	32	0.25	0.00	-11.1	14.40	E	20	20	0.00	-3.9	
10		0.33	0.00	-9.9	10.00	F	22	18	0.00	-2.7	
12			0.00	-8.7	6.40	G	24	16	0.03	-1.5	
14	26	0.54	0.00	-7.5	3.60	н	26	14	0.54	-0.3	
16	24	0.67	0.00	-6.3	1.60	1 1	28	12	8.71	0.9	
18	22	0.82	0.00	-5.1	0.40	1	30	10	139.38	2.1	
20	20	1.00	0.00	-3.9	0.00	ĸ	32	8	2230.07	3.3	
22	18	1.22	0.00	-2.7	0.40	L	34	6	35681.19	4.6	
24	16	1.50	0.03	-1.5	1.60	M	36	4	570899.08	5.8	
26	14	1.86	0.54	-0.3	3.60	N	38	2	9134385.23	7.0	
28	12	2.33	8.71	0.9	6.40	0	34	6	35681.19	4.6	
30	10	3.00	139.38	2.1	10.00	P	30	10	139.38	2.1	
32	8	4.00	2230.07	3.3	14.40	Q	26	14	0.54	-0.3	
34	6	5.67	35681.19	4.6	19.60	R	22	18	0.00	-2.7	
36	4	9.00	570899.08	5.8	25.60	5	20	20	0.00	-3.9	
38	2	19.00	9134385.23	7.0	32.40	т	16	24	0.00	-6.3	
40	0	_	146150163.73	8.2	40.00	1 11 1	20	20	0.00	-3.9	







NEWFOUNDLAND POSTAGE

Conclusions

- Homosexual orientation is correlated with X-chromosome markers in 64% of male sib-pairs
- Linkage to markers in region Xq28 has a LOD score of 4.0 ($p \sim 10^{-5}$)
- Hamer et al. (1993) conclude this there is a >99% statistical confidence "that at least one subtype of male sexual orientation is genetically influenced."
 Caveats:
 - No one marker is shared by all sib pairs: the study explicitly disclaims any

O H

- support for a "gay gene"
 The method of recruitment of gay sib-pairs raises concerns
- Replicate studies in other populations have not found the same association with Xq28