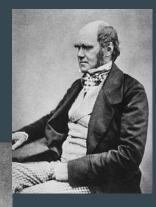
The Rna Code and Protein Synthesis

 $\bullet \bullet \bullet$

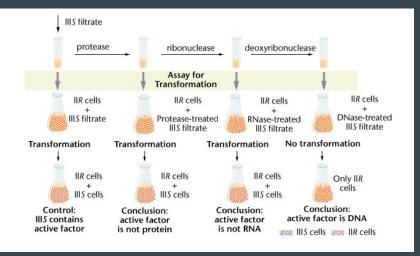
Ryan Collins, Gerissa Fowler, Sean Gamberg, Josselyn Hudasek, & Victoria Mackey

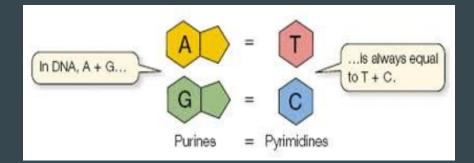
Timeline Leading up to Nirenberg's 1966 paper

1859:


 Charles Darwin published his book "The Origin of Species"

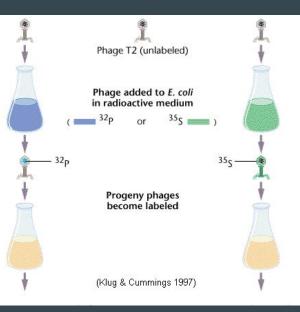
1866:


• Gregor Mendel completed his experiments on peap thus marking the beginning of genetics as a science


1868:

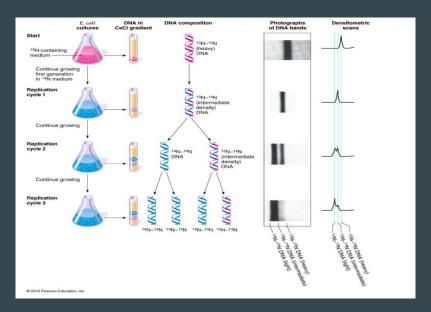
• Friedrich Miescher isolated nuclein from the cell nuclei

• 1944: Avery discovered DNA and suggested that it responsible for the transforming principle

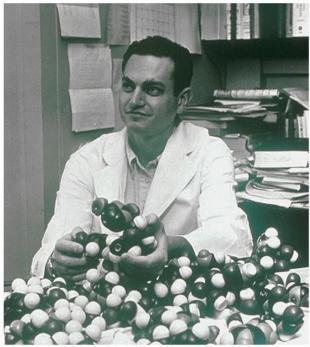


• 1950: Chargaff's rules

• 1952: Photo 51 by Franklin and Gosling


• 1952: Hershey & Chase blender experiment

• 1953: Watson & Crick's DNA model


• 1958: DNA is Semiconservative

• 1961:

- Brenner, Jacod, Crick & Monod discovers mRNA
- Gamow suggests triplet code
- Nirenberg and Matthaei identify the amino acid for poly-U

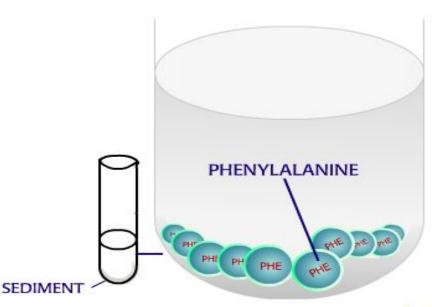
Dr. Marshall Nirenberg (1927-2010)

Courtesy of the National Library of Medicine. Noncommercial, educational use only.

•Born in NY city and grew up in Florida Interest in bird-watching •University of Florida •B.Sc. and master's •University of Michigan •Ph.D. National Institute of Health Interested in fundamentality of life

Poly-U Experiment

• E. Coli bacteria is ground up to produce a cell-free system
• Treated with DNase



- 20 test tubes were used, one radioactively labeled, containing:
 - E. Coli extract
 - Synthetic RNA made of uracil
 - Amino acids

Results

- When radiolabeled Phenylalanine was added to the test tube with synthetic RNA composed of only uracil they found polypeptides made of only Phenylalanine
- The code can be broken!!

1963 Cold Spring Harbor Meeting

• Central Dogma and properties of the RNA code

• Questions raised about the fine structure of RNA

Formation of codon-ribosome-AA-sRNA complexes

Base sequence assay requires the following:

 trinucleotides are able to serve as templates for AA-sRNA-ribosome binding

ii. codon-ribosome-AA-sRNA complexes can be retained by cellulose nitrate filters

C ¹⁴ -Phe-sRNA bound to ribo- somes ($\mu\mu$ mole)		
5.99		
0.12		
0.00		
0.09		
5.69		
5.39		
4.49		
2.08		

Formation of codon-ribosome-AA-sRNA complexes

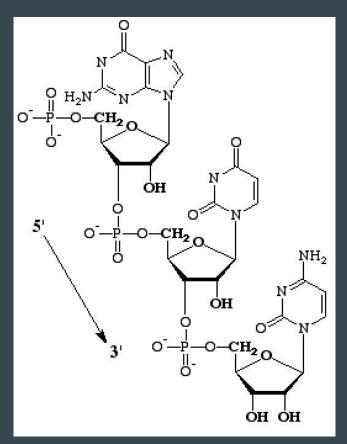
Poly U: codon

Ribosome: translational apparatus. Sourced from *E. coli*

Mg++: Critical for Aminoacyl tRNA synthetase action

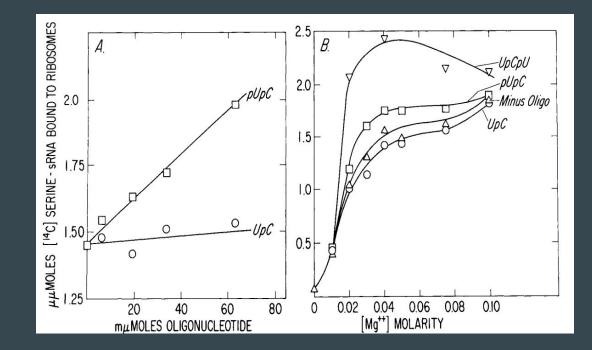
deacylated sRNA: Competitively binds to ribosome

Ribosomes	-
Modifications	C ¹⁴ -Phe-sRNA bound to ribo- somes ($\mu\mu$ mole)
Complete	5.99
Poly U	0.12
– Ribosomes	0.00
Mg ⁺⁺	0.09
+ deacylated sRNA at 50 min	
0.50 A ²⁶⁰ units	5.69
2.50 A ²⁶⁰ units	5.39
+ deacylated sRNA at zero time	
0.50 A ²⁶⁰ units	4.49
2.50 A ²⁶⁰ units	2.08


Formation of codon-ribosome-AA-sRNA complexes

Oligionucleotides synthesized using two methods:

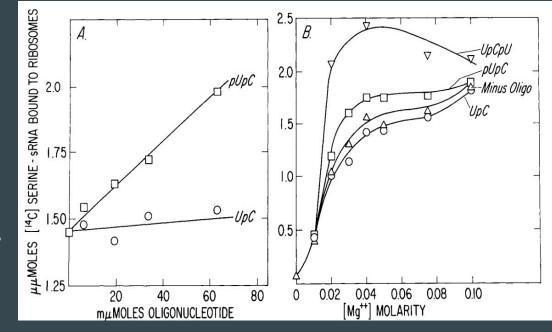
- i. Polynucleotide phosphorylase (PNPase)
 - \circ UpU + pUp = UpUpU + Pi


ii. Pancreatic RNase catalysis

 uridine- or cytidine-2',3'
 cyclic phosphate

Trinucleotides stimulate binding of respective sRNA to a much greater degree than corresponding dinucleotides

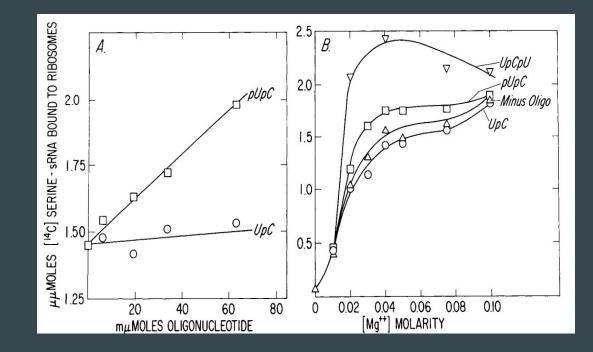
Demonstrates triplet code,
 3 sequential bases



Triplets with 5' terminal phosphate have greater activity than those with 3' terminal phosphates

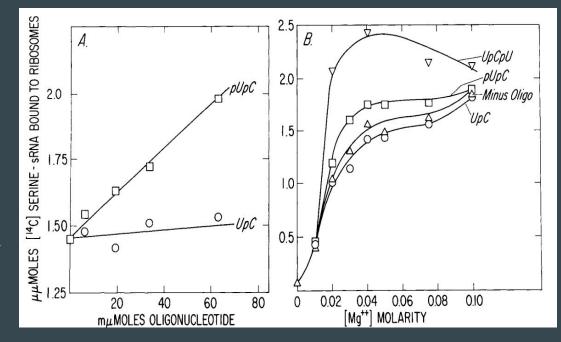
Hexa-A nucleotides **more active** than penta-A

→ Two Lys-sRNA bind to hexa-A, only one to penta-A


 \rightarrow Multiples of 3

Doublet with a 5' phosphate pUpC templates for Ser-sRNA but **not** LeusRNA or Ile-sRNA

- \hookrightarrow Ser: UCx
- \hookrightarrow Leu: UCG > UCx
- \hookrightarrow Ile: AUC


UpCpU > pUpC >>> UpC

A doublet with a 5' phosphate can serve as a **specific** (though weak) template

Implications:

- → Occasional recognition of only 2 of
 3 bases during translation
- → triplet code made have evolved from a primitive **doublet code**

Three classes of codons, differing in structure:

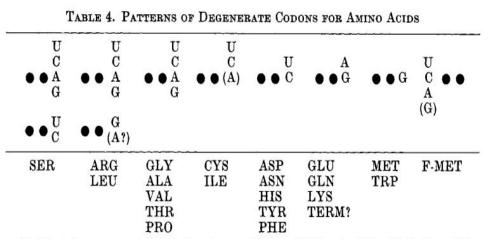
- 5'-terminal
- internal
- 3'-terminal

The first base of 5'-terminal and last of 3'terminal may be recognized with **less fidelity**

- Greater freedom of movement in the absence of a 'neighbor'
- → Terminal bases may serve as operator regions

	Femplate Act ligonucleoti	rivity of Substituted des
В	в	В
—ОН (2′) —ОН	
) -0 P	OH (3')
(5′) HO—	6-1	o_
Oligonucleot	ide	Relative template activity
$\begin{array}{c} p-5'-UpUpU\\ UpUpU\\ CH_3O-pUpUpU\\ UpUpU-3'3-\\ UpUpUp-0(\\ UpUpU-2',3\\ (2'-5')-UpUpU\\ Oligodeoxy T\end{array}$	p C H₃ ′-cyclic p	510 100 74 48 18 17 0 0
p-5'-ApApA ApApA ApApA-3'-p ApApA-2'-p (2'-5')-ApApA Oligodeoxy A		181 100 57 15 0 0

Determined by stimulating *E. coli* AA-sRNA binding to *E. coli* ribosomes with trinucleotide templates

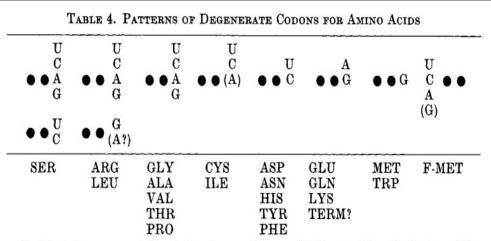

Forty-six codon base compositions confirmed using trinucleotide studies

Almost all triplets correspond to amino acids

TABLE 3. NUCLEOTIDE SEQUENCES OF RNA CODONS

1st		2nd Bas			3rd
Base	U	С	Α	G	Base
	PHE*	SER*	TYR*	CYS*	U
U	PHE*	SER*	TYR*	CYS	C
0	leu*?	SER	TERM?	cys?	A
	leu*, f-met	SER*	TERM?	TRP*	G
	leu*	pro*	HIS*	ARG*	
0	leu*	pro*	HIS*	ARG*	C
С	leu	PRO*	GLN*	ARG*	A
	LEU	PRO	gln*	arg	G
	ILE*	THR*	ASN*	SER	U
	ILE*	THR*	ASN*	SER*	C
A	ile*	THR*	LYS*	arg*	A
	MET*, F-MET	THR	lys	arg	G
	VAL*	ALA*	ASP*	GLY*	U
~	VAL	ALA*	ASP*	GLY*	C
G	VAL*	ALA*	GLU*	GLY*	A
	VAL	ALA	glu	GLY	G

- Alternate bases of degenerate codons usually occupy the third position
- Triplet pairs with **3' pyrimidines** (XYU and XYC) usually correspond to the same amino acid
- Triplet pairs with **3' purines** (XYA and XYG) often correspond with the same amino acid



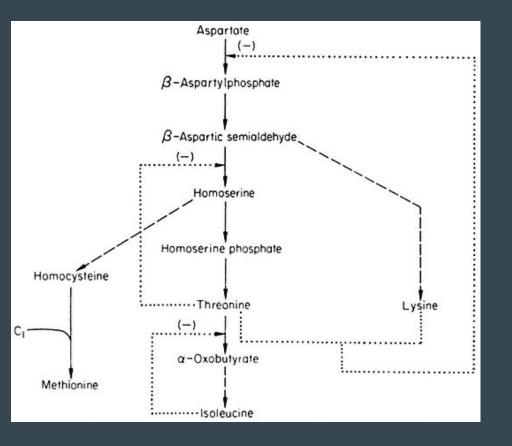
Solid circles represent the first and second bases of trinucleotides; U, C, A, and G indicate bases which may occupy the remaining position of degenerate codons. In the case of F-Met (N-formylmethionine), circles represent the second and third bases. Parentheses indicate codons with relatively low template activities.

Implications:

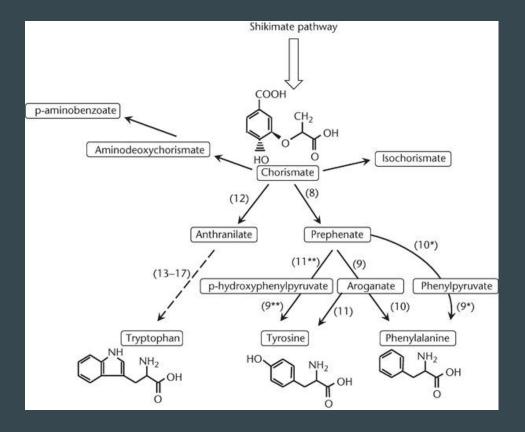
→ Single base replacements may be silent

- → Structurally/metabolically related amino acids have similar codons
 - Asp (GAU and GAC) similar to Glu (GAA GAG)

Solid circles represent the first and second bases of trinucleotides; U, C, A, and G indicate bases which may occupy the remaining position of degenerate codons. In the case of F-Met (N-formylmethionine), circles represent the second and third bases. Parentheses indicate codons with relatively low template activities.

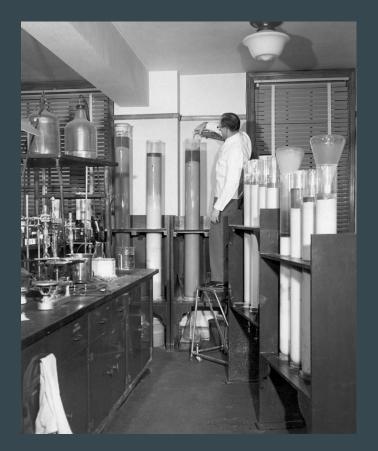

Grouping by **biosynthetic precursor** suggest codon relationships:

Asp: GAU, GAC


- Asn: AAU, AAC
- Lys: AAA, AAG
- Thr: ACU, ACC, ACA, ACG
- Ile: AUU, AUC, AUA
- Met: AUG

Aromatic amino acids often begin with U

- Phe: UUU, UUC
- Tyr: UAU, UAC
- Trp: UUG


These relationships may be artifacts of evolution or be evidence of **direct** interaction between amino acids and codon bases

Patterns of Synonym Codons Recognized by Purified sRNA Fractions

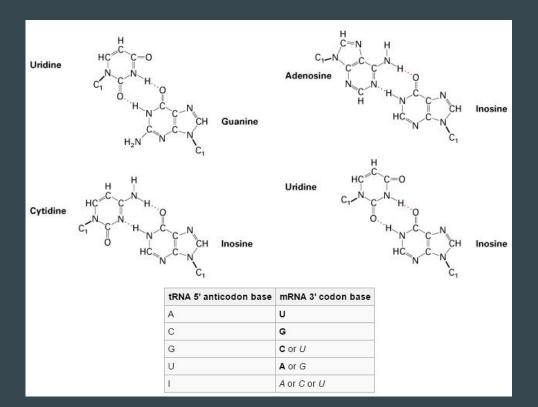
Degenerate codons for the same amino acid may be recognized by specific sRNAs (referred to as **sRNA fractions**)

Fractions were purified using **column chromatography** and **countercurrent distribution**

Patterns of Synonym Codons Recognized by Purified sRNA Fractions

Discernable patterns of recognition in third position synonym codons:

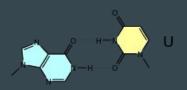
• C = U

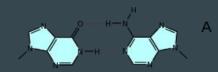

- A = G
- G
- U = C = A
- A = G = (U)

			Alte	rnate acc	eptable	bases in 3rd or	1st positions	of triplet			
-	C U		A G		G		U C A		A G (U)	Possibly 2 ba recogn	ses
TYR _{1,2}	UA ^C U	LYS	AA _G ^A	LEU2	CUG	ALAyeast	U GCC A	ALA1	A GCG (U)	LEU3	CU ^(U) (C)
VAL ₃	${\rm GU}_{{\rm U}}^{{\rm C}}$			LEU5	UUG	SER _{2,3}	UCC A	VAL _{1,2}	A GUG (U)	LEU4a,b	UU(U) (C)
				MET ₂	AUG	F-MET1	U C UG A			LEU1	(U)UG
						TRP2	U CGG (A)				

Crick (1966) suggests certain anticodon bases form alternate hydrogen bonds with corresponding mRNA bases

↔ "Wobble mechanism"

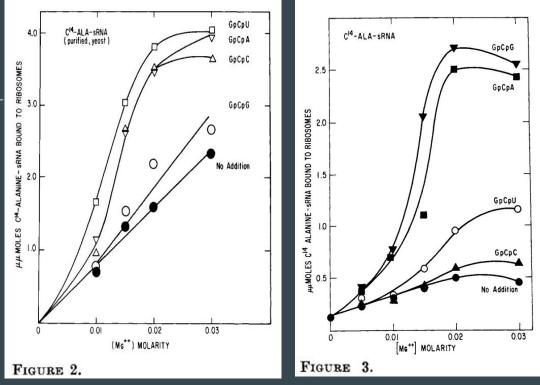

How can this be observed?



Crick's Wobble Hypothesis

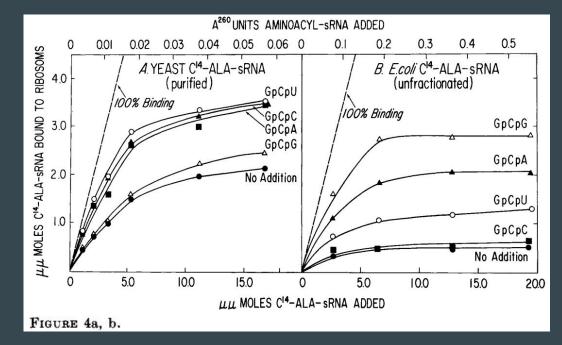
- Pairings in between two nucleotides that do not follow
 - Watson-Crick base pair rules
- Guanine-Uracil, Hypoxanthine-Uracil, Hypoxanthine-Adenine

and Hypoxanthine-Cytoseine

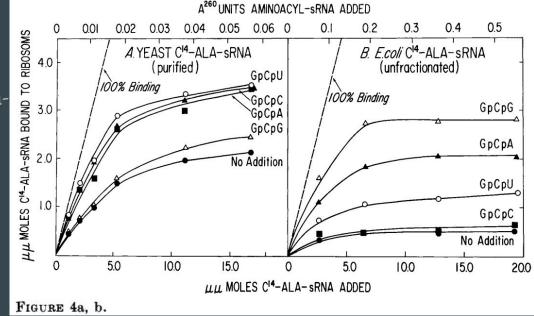


 → Purified yeast (Fig. 2) and unfractionated *E. coli* (Fig. 3) C¹⁴-AlasRNA response to synonym Alacodons as a function of [Mg++]

Different codons may elicit divergent responses

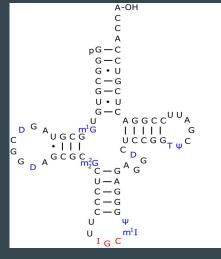

At **limiting** concentrations of C^{14} -Ala sRNA

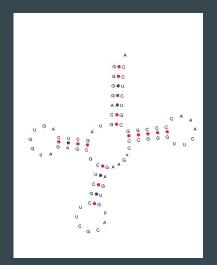
Yeast:


• GCU - **59%;** GCC - **45%**; GCA - **45%**; GCG - **3%**

E. coli:

• GCU - **18%**; GCC - **2%**; GCA - **38%**; GCG - **64%**




- The purity of the yeast Ala-sRNA used in these experiments was > 95%
- This implies that **one specific molecule** of AlasRNA recognizes at least 3 synonym codons
- Additionally, there are disparate responses to synonym codons between yeast (Eukaryota) and *E. coli* (Bacteria)

- To further derive information about the structure of Ala-sRNA and the mechanism of codon recognition, we may relate it to its conjugate mRNA
- Possible anticodon sequences:
- -IGC MeI-
- or

DiHU-CGG-DiHU

* I = hypoxanthine/inosine; DiHU = dihydrouracil

If CGG is the anticodon we will observe:

- **parallel** hydrogen bonding with GCU, GCC, and GCA
- If IGC is the anticodon we will observe:
 - antiparallel hydrogen bonds between GC in the anticodon and GC in the first and second position anticodons
 - alternate pairing of I in the anticodon with U, C, and A (but not G) in the third position of the Ala-codon

RECOGNITION	OF ALA-CODONS BY	YEAST ALA-sRNA
sRNA	CUUIĢÇIWGG	Di Di H H UAGUCGGUAGC
	*	
mRNA	ĞĊÙ	GCU
	GCC	GCC
	GCA	GCA
	(GCG)	(GCG)

Evidence is consistent with an IGC Alaanticodon

Patterns of codon recognition support wobble hypothesis

Suggest only 2 of 3 bases may be recognized

sRNA Anticodon	mRNA Codon
U	A G
С	G
A	U
G	C U
I	U C A
rT	A G
ψ	A G (U)
DiHU	No base pairing

Universality

	U	C	A	G	
	PHE	SER	TYR	cys	U
v	PHE	SER	TYR	cys	C
"	leu?	SER	TERM?	cys	A
	leu, F-MET	SER	TERM?	trp	G
	leu	PRO	HIS	ARG	U
	leu	PRO	HIS	ARG	C
C	leu	PRO	gln	ARG	A
	leu	PRO	gln	ARG	G
	ILE	THR	asn	SER	U
A	ILE	THR	asn	SER	C
	ILE	THR	LYS	[ARG†]	A
T	MET, F-MET?	THR	LYS	ARG	G
1	VAL	ALA	ASP	GLY	U
	VAL	ALA	ASP	GLY	c
G	VAL	ALA	GLU	gly	A
	VAL	ALA	GLU	gly	G

Universality

- RNA code is largely universal
- Cell may may differ in specificity of codon translation
- Near identical translations in bacteria, mammalia and amphibia
- → Similarity suggests functional genetic code may be > 3 billion years old

			sRNA	
Co	don	Bacterial (E. coli)	Amphibian (Xenopus laevis)	Mammalian (Guinea pig liver)
ARG	AGG CGG	± ±	++++++++++++++++++++++++++++++++++++	+++ ++++
MET	UUG	++	±	±
ALA	GCG	++++	±	++
ILE	AUA	±	++	++
LYS	AAG	±	++++	++++
SER	UCG AGU AGC	++++ ± ±	± +++ +++	++ +++ +++
CYS	UGA	±		+++
Possible	differen		THR; AUC, I AL; and GCC,	

Unusual Aspects of Codon Recognition as potential indicators of special codon functions

- Introduction
- Codon Frequency and Distribution
- Codon Position
- Template Activity
- Codon Specificity
- Conclusion

Introduction

- Codons can serve multiple functions other than corresponding to amino acids; such as initiation & termination codons or the regulation of protein synthesis.
- Some codons can exhibit special properties related to codon position, template activity/specificity, stability of codon-ribosome-tRNA complexes, etc.
- These topics will be discussed to explain how they are possible indicators of special codon function.

Codon Frequency and Distribution

- Multiple species of tRNA can correspond to the same amino acid, differing only in the 3rd base of the anticodon
- Since a different tRNA is required for each codon it can be concluded that protein synthesis may be regulated by the frequency and distribution of codons (as there's a limited abundance of each tRNA) as well as recognition of degeneracies.

Codon Position

- They discussed how reading of the mRNA is probably initiated at the 5' terminal end to the 3' end.
- N-formyl-Met-tRNA may act as an initiator of protein synthesis (done in *E. coli*), binding primarily to AUG.
- In *E. coli* protein synthesis can be initiated by start codons specifying the N-formyl-Met-tRNA or by other means that do not involve the N-formyl-Met-tRNA (may be codons with a high Mg++ concentration).
- UAA and UAG trinucleotides seem to function as terminator codons because they do not stimulate binding of the tRNA to the ribosomes.

Codon Position Continued

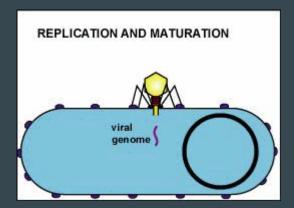
- Extragenic suppressors can affect the specificity of these terminator codons (UAA and UAG).
- Amber mutation UAG codon
- Ochre mutation UAA codon
- The amber suppressor mutates the tRNA to override the stop codon (UAG) and continue reading the strand (ochre suppressors working in much the same way). The amber suppressor has a higher efficiency than the ochre suppressor, therefore ochre mutations (UAA codons) are more frequent in vivo.
- Protein synthesis can be regulated by the position of the codon in respect to the amber suppressors.

Template Activity

- UAA, UAG, & UUA show little template activity for AA-tRNA, while other codons are active templates for tRNA in some organisms but not others.
- Possible explanations for low template activity can be: codon position, abundance of appropriate tRNA, high ratio of deacylated to AA-tRNA, low Mg++ concentrations, special codon function, etc.

Codon Specificity

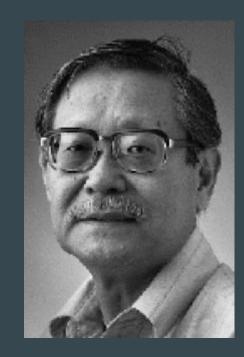
- Synonym trinucleotides differ in template specificity and can change depending on the concentration of Mg++ present (Shown in Table 9).
- At 0.010-0.015^M Mg ++ trinucleotide specificity is high but at 0.03^M Mg ++ there's so much Mg++ present that the specificity is reduced and recognition of trinucleotides become ambiguous.
- In some cases one or two codons in a synonym set are active at 0.01 m Mg++ and all degeneracies are active at 0.03 m Mg++. Other times all synonym trinucleotides are active at both concentrations (ex: Valine) or only active at the 0.03 m Mg++ concentration (ex: Tyrosine).
- Codon-ribosome-AA-tRNA complexes (formed with degeneracies) therefore have varying stability.


	U	С	A	G	
U	PHE	SER	TYR	CYS	U
	PHE	SER	TYR	CYS	c
		(SER)			A
	FMET	SER		(TRP)	G
		PRO	HIS	ARG	U
с		PRO	HIS	ARG	C
		(PRO)	GLN	ARG	A
	LEU	(PRO)	GLN	ARG	G
A	ILE	THR	ASN	SER, CYS	U
	ILE	THR	ASN	SER, CYS	C
		THR	LYS		٨
	[MET]	THR	LYS		G
G	VAL	ALA	ASP	GLY	τ
	VAL	ALA	ASP	GLY	C
1	VAL	ALA	GLU	(GLY)	A
	VAL	ALA	GLU	(GLY)	G
Leg	end:	0.01 2	a Mg 0.03	м Мg	
		- +		+	

Relative template activities of trinucleotides in reactions containing 0.01 or 0.03 \times Mg⁺⁺. A plus (+) sign in the legend means that the trinucleotide stimulates AA-sRNA binding to ribosomes at that magnesium concentration; a minus (-) sign means it is relatively inactive as a template. The results refer to AA-sRNA from *E. coli* strains B and/or W3100. The data are from Anderson, Nirenberg, Marshall, and Caskey (1966).

Conclusion

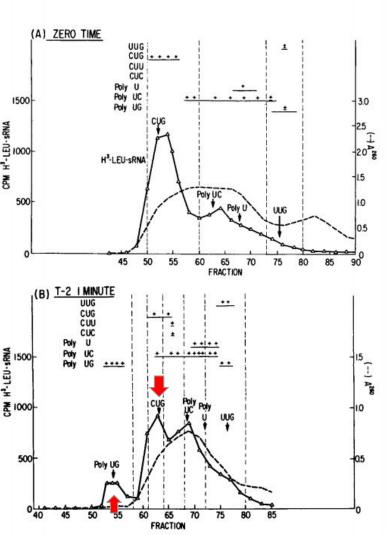
- Codons can have alternate meanings, in that the location of the codon in the strand will affect what amino acid is produced.
- A codon can have multiple functions
- These functions are subject to change
- Degenerate codons usually exhibit differences in their template properties


MODIFICATION OF CODON RECOGNITION DUE TO PHAGE INFECTION

Discovering the changes that a bacteriophage can make in host cell's protein synthesis.

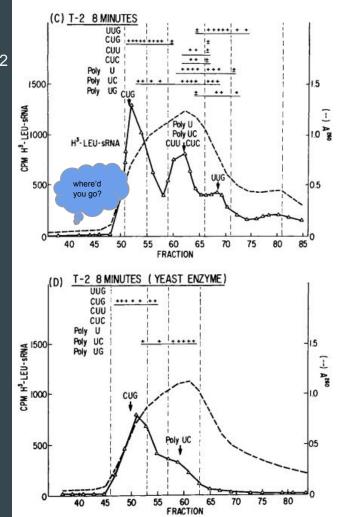
Noboru Sueoka - Molecular Biologist

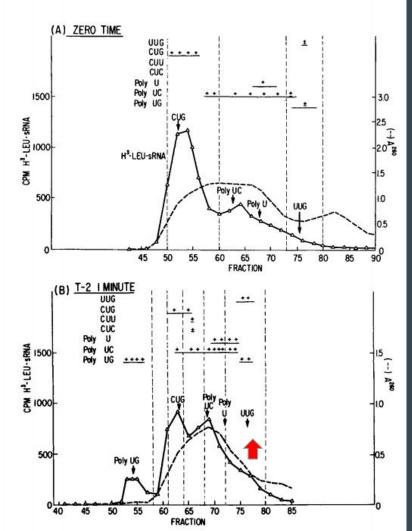
- born April 12 1929 in Kyoto Japan
- Undergraduate (1953) and Masters degrees from Kyoto University, PhD (1955) from California Institute of Technology
- Research fellow at Harvard, Cambridge and Massachusetts
- Professor at The University of Illinois, Princeton and Colorado
- Member of the American Academy of Arts and Science
- Contributor to over 140 articles on genetics and molecular biology
- Daughter and Wife
- Enjoys Fly Fishin and Skiiing in his spare time



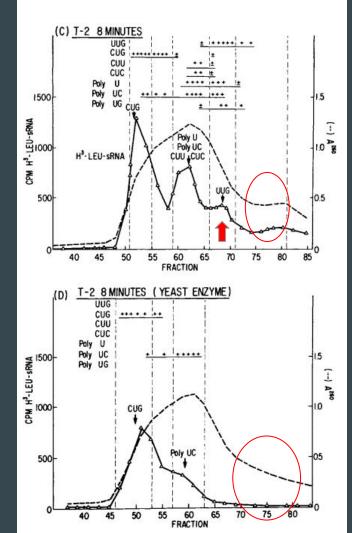
The Original Experiment That led to Helping Nirenberg

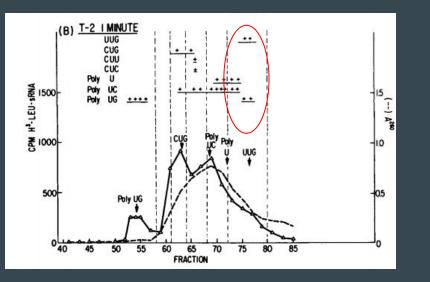
- Completed at Princeton University
- Knew that phage infection causes differentiation in gene expression within the host cell, but How?
- Maybe sRNAs are involved!
- Compared aminoacyl-sRNAs for 17 amino acids before and after infection
- Using MAK (methylated albumin-kieselguhr) column fractionation technique
- Only leucyl-sRNA showed a significant change after infection, and with even closer analysis only certain components of the sRNAs were being altered
- With further experimentation, it was also found that the phage DNA must be injected into the host and protein synthesis for the host cell must occur after the infection
- In the end, the host cell's protein synthesis is inhibited and the virus' continues

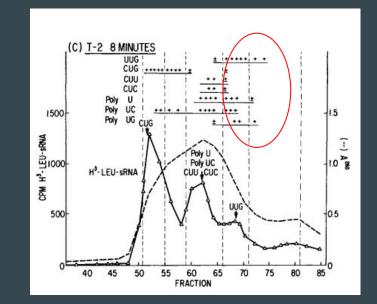

Sueoka & Nirenberg working together


- What does this mean for the modified Leu-sRNAs codon recognition?
- sRNA preparations were isolated before the phage infection and at 1 minute and 8 minutes after the infection
- sRNA was then acylated with H³ leucine by *E. coli* or Yeast synthetase (yeast allows both anticodon recognition and enzyme recognition sites to be monitored)
- MAK chromatography was then used to purify the Leu-sRNA preparations
- this allowed the observation of the differential binding to ribosome templates between each of the fractions of Leu-sRNA

after 1 minute of
 infection, Leu-sRNA₂
 decreased in its
 response to CUG

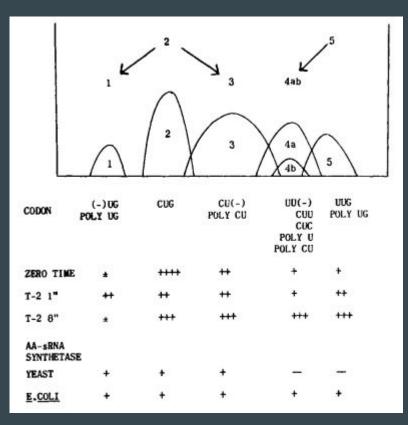

correspondingly,
 Leu-sRNA₁ had
 an increase in
 response to poly
 UG but not to the
 trinucleotides and
 was completely
 undetected after
 8 minutes




 - an increase in Leu-sRNA₅ response to UUG was observed at 1 minute after infection and was even greater at 8 minutes
 - both Leu-sRNA₅

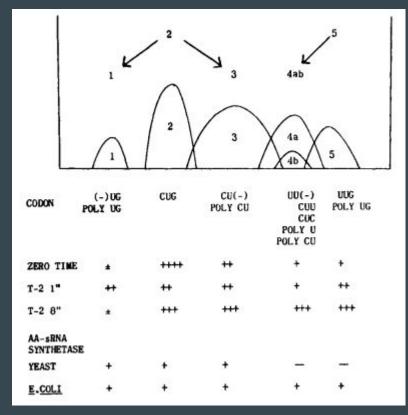
- both Leu-sRNA₃ and Leu-sRNA_{4a,b} had greater response to poly UC 8 minutes after infection but they also had varying responses in yeast and *E. coli*

- this suggests that a fraction of Leu-sRNA₃ must differ from the Leu-sRNA_{4a,b} even though they both respond to poly UC
- and the multiple responses of Leu-sRNA_{4a,b} to poly U, poly UC and the trinucleotides CUU and CUC suggests that the fractions may be from two different species of Leu-sRNA



Why are these fractions responding so differently?

- Leu-sRNA fractions 1,2 and 3 respond to both E. coli and Yeast Leu-sRNA synthetase
- Leu-sRNA₅ and Leu-sRNA_{4a,b} are only recognized by E. coli synthetase
- This suggests that there are two separate cistrons for Leu-sRNA
- fractions 1, 2 and 3 in one cistron and fractions 4 a, b and 5 in another
- the corresponding decrease in Leu-sRNA₂ and increase in Leu-sRNA₁ suggests that Leu-sRNA₂ is the precursor of Leu-sRNA₁ and the data also suggests it is the precursor of Leu-sRNA₃


Cistron "A" includes the Leu-sRNA fractions 1, 2 and 3

- Leu-sRNA₂ shows a relationship with the CUG codon
- Leu-sRNA₃ to the CU(-) codons,
 (can be subsituted with multiple end bases)
- Leu-sRNA₁ to the (-)UG codons

Cistron "B" includes the Leu-sRNA fractions 4 a, b and 5

- Leu-sRNA₅ differs from Leu-sRNA₂ in both anitcodon and synthase recognition sites
- Data suggests that Leu-sRNA₅ is the precursor to Leu-sRNA_{4a, b}
- Leu-sRNA₅ demonstrates a relationship with the codon UUG
- Leu-sRNA₄ with the codons UU(-),
 UC(-), UA(-), CU(-), and AU(-)

So what does this mean?

- we know that modification of Leu-sRNA after infection requires protein synthesis to occur (from Sueoka's prior experiment), which suggests that specific enzymes may be needed to modify the bases in Leu-sRNA fractions
- the inhibition of the E.coli's protein synthesis but not the virus' suggests that the modifications to Leu-sRNA may be to blame
- the initiator of protein synthesis in E. coli responds to the same trinucleotides as the Leu-sRNA fractions (UUG and CUG)
- the modification of Leu-sRNA must result in the prevention of E. coli protein synthesis initiation but must leave the viral protein synthesis unaffected

Further studies were required...

References

- Carr, S. (2016, Feb). Suppressor mutations: "*Two wrongs make a right*". Retrieved from: <u>https://www.mun.</u> <u>ca/biology/scarr/4241_Suppressor_mutation.html</u>
- Carr, S. (2015). Cracking the code. Retrieved from https://www.mun.ca/biology/scarr/4241_Cracking_the_Code.html
- Cold Spring Harbor Laboratory. (2016). Retrieved from http://www.cshl.edu
- Leder, P., M.F. Singer and R.L.C. Brimacombe. 1965. Synthesis of trinucleotide diphosphates with poly-nucleotide phosphorylase. Biochem. 4: 1561-1567.
- Nirenberg, M., Caskey, T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., Hatfield, D., Levin, J., Rottman, F., Pestka, S., Wilcox, M., & Anderson, F. (1966). The RNA code and Protein Synthesis. *Cold Spring Harb Symp Quant Biol, 31: 11-24.*
- Nobelprize.org. (2016). Retrieved from http://www.nobelprize.org
- Office of NIH history. (2016, February 1). Retrieved from https://history.nih.gov/index.html
- Sueoka, N., and T. Kano-Sueoka. 1964. A specific modification of Leueyl-sRNA of Escherichia cell after phage T2 infection. *Prec. Natl. Acad. Sci. 52:* 1535-1540.
- Wacker, W. E. C. (1969), The Biochemisty of Magnesium. Annals of the New York Academy of Sciences, 162: 717–726. doi: 10.1111/j.1749-6632.1969. tb13003.x