

Inherited Disease (AKA Genetic Disease): A disease that is caused by a defect in the genome and that, like other genetic features, can be passed from parents to offspring.

Epigenetics: A heritable change to the genome that does not involve a mutation.

"The term inherited disease must however, be used with caution as there are some genetic diseases, cancer being an example, that are not inherited." (Brown, 2012)

MONOGENIC DISORDERS

- <u>Definition</u>: A disease resulting from a defect in individual genes.
 > 6000 inherited diseases
- 1:200 Births

Table 20.1 Some of the Commonest Monogenic Disorders			
Disease	Symptoms	Frequency (UK Births/Year)	
Inherited Breast Cancer	Cancer	1 in 300 Females	
Cystic Fibrosis	Lung disease	1 in 2000	
Huntington's Disease	Neurodegeneration	1 in 2000	
Duchenne Muscular Dystrophy	Progressive muscle weakness	1 in 3000 Males	
Hemophilia A	Blood disorder	1 in 4000 Males	
Sickle-Cell Anemia	Blood disorder	1 in 10,000	
Phenylketonuria	Mental retardation	1 in 12,000	
B-Thalassemia	Blood disorder	1 in 20,000	
Retinoblastoma	Cancer of the eye	1 in 20,000	
Hemophilia B	Blood disorder	1 in 25,000 Males	
Tay-Sachs Disease	Blindness, loss of motor control	1 in 200,000	
	Adapted from:	Brown (2012), Table 20.1	

CAUSATION OF INHERITED DISEASES

- Loss of Function Mutations (Common)
- Gain of Function Mutations (Rare)
- Tri-nucleotide Repeat Expansions
- Dominant/Recessive Relationships
- Large Deletions and Chromosome Abnormalities
- Activation of Proto-oncogenes
- Defective Tumor Suppressor Genes
- 🚖 Gene Therapy

9	CYSTIC	C FIBRC	SIS
 "Cystic f affecting Con defic lung A single 	ibrosis (CF) is the g Canadian child aplications: Diffici ciencies (loss of p function. • http disorder resulting	most common fatal liren and young adul ulties in digesting fats bancreatic enzymes) ://www.cysticfibrosis from more than one	genetic disease ts. There is no cure." s/proteins, vitamin , progressive loss of .ca : mutation (1400
possible	mutations) utation occurred ussed onto desce	in the sex cell of an ondents.	ancestor which has
Mutation	Table 20.2 The Comr	nonest Cystic Fibrosis (CF) !	Hutations
Mutation	Patience	Structure	Effect on Frotein Function
ΔF508	68%	Deletion of phenylalanine	Does not attach to cell membrane
G542X	2.5%	Not synthesized	No protein
G551D	1.5%	Replacement of glycine with aspartic acid	Low rate of chloride transport

Adapted from: Brown (2012), Table 20

HUNTINGTON	IS DISEASE	
normal HD gene ↓ transcription, translation Gin ₆₋₃₅ functional HD protein	expanded HD gene (CAG) ₃₄₋₁₃₁ Gln ₃₄₋₁₃₁ dysfunctional HD protein	
Ngury 21.6 http://www.sectory.org		

TABLE	20.3 EXAMPLES OF	HUMAN TRINUCLEOT	IDE REPEAT EXPANSIONS
	Repeat sequence		
Gene	Normal	Mutated	Associated disease
Polyglut	tamine expansions (wi	thin the coding regions	of genes)
HD	(CAG) 6-35	(CAG)36-121	Huntington's disease
AR	(CAG) _{s-M}	(CAG) ₃₈₋₆₂	Spinal and bulbar muscular atrophy
DRPLA	(CAG) ₆₋₃₃	(CAG) _{e-m}	Dentatorubral-pallidoluysian atrophy
SCA1	(CAG)	(CAG) 39-40	Spinocerebellar ataxia type 1
SCA3	(CAG),2-40	(CAG)	Machado-Joseph disease
Other ex	pansions (outside the	coding regions of gener	.)
X25	(GAA) ₇₋₃₄	(GAA) 34-0000 200	Friedreich's ataxia
DMPK	(CTG) ₅₋₃₇	(CTG) ₅₀₋₃₀₀₀	Myotonic dystrophy
EPM1	(CCCCGCCCCGCG),	(CCCCGCCCCGCG)	Progressive myoclonus epilepsy

(A) Friedreich's a	taxia	(B) myotonic dystrophy
	frataxin gene	protein kinase gene
	intron exon	
(GAA), a	8281	(CTG) ₅₋₀
1		ļ
(GAA),		(ста),,,,,,,
↓		↓
decreased mRNA sy	ynthesis	premature mRNA degradation
Figure 20.7 Introduction to Get	utics (* Garland Science 2012)	

CONTINUED....

- GFM, likely to be dominant; LFM likely to be recessive.
 GFM Heteroxygote; a GFM activity likely to over-ride the affect of the normal allele.
 LFM Heteroxygote; LFM often compensated by one normal allele.

 - *EXCEPTIONS:
 - TNE that occur in coding region of gene = Loss of function, but the expanded alleles are dominant and the normal alleles are recessive.
 - e ??? Underlying cause unknown, but may be due to abnormal protein products coded by the TNE geness = form insoluble aggregates within nerve cells.
 2. Haploinsufficiency: Heterozygote phenotype: -50% reduction in protein activity, caused by presence of mutated allele. *Supravalvular aortic stenosis, Alagille syndrome

GENETIC BASIS OF CANCER

"Cancer is a group of diseases characterized by uncontrolled division of a somatic cell" (Brown, 2012).

Underlying defects are gene mutations, therefore it is classed as a genetic disease.
 Inheritance of these mutations gives an individual predisposition to cancer.

To Consider:

- The nature of genetic change giving rise to cancer. Multi-step model of cancer development.

DISCOVERY OF ONCOGENES

(1960's) Discovery of acute transforming viruses – Retrovirus (carries a copy of human gene) infects and transforms a cell into a cancerous state.

- state. Uncontrolled expression of gene carried by retrovirus (overrides regulated expression pattern of host/cellular gene). Transformation process, termed **Oncogenesis**. Gene carried by virus, with potential to cause cancer is termed as Concernent of the state of an Oncogene.
- (1980s) Second breakthrough Discovered function of cellular v-sis oncogene (platelet-derived growth factor B protein; paramount role in cell growth/division).
 Other viral genes were found to be versions of cellular genes involved in activities such as; intracellular signaling, regulation of transcription, and cell cycle control.
 - - Cellular versions of these genes, termed proto-oncogenes.
 Normal state: non-harmful; activation of oncogene = conversion into oncogene capable of initiating cancer.

SOMATIC CELL THERAPY

- Transfer of new genes into somatic cells (less controversial)
- Used to treat individual (new genes not passed onto offspring)

• 2 Approaches:

- 1. Transfer of DNA into liposomes
- 2. Using Viruses as vectors

GENE THERAPY – RECESSIVE AND DOMINANT INHERITED DISEASE

Basic Principle:

- Recessive disease -> addition of correct gene.
- Dominant disease -> addition of correct gene
 + removal of defective gene.

