The Kostrikin radical in characteristic zero

Esther García
esther.garcia@urjc.es
Universidad Rey Juan Carlos
Madrid (Spain)

Newfoundland, July 18-23, 2010
(joint work with M. Gómez Lozano)

What do we know in char 0 ?

Condition $\hat{\mathcal{H}}$

\forall quotient of L, \forall (no limit) ordinal β,
$\left.\begin{array}{l}M \text { submodule of } K_{\beta}(L) / K_{\beta-1}(L) \\ M \text { invariant under inner automorphisms }\end{array}\right\} \Longrightarrow M$ ideal

Theorem

L nondegenerate, $\hat{\mathcal{H}}$, every ideal with Jordan elements. Then $K(L)=\bigcap$ (str. prime ideals of L) $=0$.

Main example

L over a field of characteristic zero $\Longrightarrow \hat{\mathcal{H}}$

Can we do better?

Suggestion by Efim Zelmanov:

USE GENERALIZED M-SEQUENCES!!

(e-mails and manuscript notes exchanged with E. Zelmanov)

Theorem

L over a field of characteristic zero

- $K(L)=\{a \in L \mid$ finite generalized m-sequence $\}$
- $K(L)=\bigcap$ (str. prime ideals of L)
- L nondegenerate $\Rightarrow L$ subdirect product of str. prime algebras.

The sets $B_{n}(L): \quad K_{1}(L)=\bigcup_{n} B_{n}(L)$

$$
\begin{gathered}
B_{n}(L)=\left\{\sum_{i=1}^{n}\left[\left[\left[a_{i}, b_{i_{1}}\right], \ldots, b_{i_{k_{i}}}\right]\right] \mid 0 \leq k_{i} \leq n, b_{i_{j}} \in L\right\} \\
\left(\operatorname{ad}_{a_{i}}^{2}=0, i=1, \ldots, n\right)
\end{gathered}
$$

The functions $f(n, r)$:

Lemma

$\forall n, r \in \mathbb{N} \exists f(n, r) \in \mathbb{N}$ such that $\forall L$ of char 0 and $\forall a \in B_{n}(L)$

$$
\operatorname{ad}_{\left[\left[a, b_{1}\right], \ldots, b_{k}\right]}^{f(n, r)} b_{0}=0 \text { for every } b_{0}, \ldots, b_{k} \in L, 0 \leq k \leq r
$$

Important:

- $f(n, r)$ exists with independence of the Lie algebra
- \underline{n} for the set $B_{n}(L), \underline{r}$ for how many arbitrary elements $b_{i} \in L$

Construction of the $f(n, r)$:
We want $\operatorname{ad}_{\left[\left[a, b_{1}\right], \ldots, b_{k}\right]}^{f(n)} b_{0}=0$
Remember that $a \in B_{n}(L)$ has the form $\sum_{i=1}^{n}\left[\left[\left[a_{i}, b_{i 1}\right], \ldots, b_{i_{k}}\right]\right]$
New variables:

$$
X:=\left\{x_{0}\right\} \cup\left\{x_{i} \mid i \in \mathbb{N}\right\} \cup\left\{x_{i j} \mid i, j \in \mathbb{N}\right\} \cup\left\{y_{i} \mid i \in \mathbb{N}\right\}
$$

- x_{0} for where we evaluate, " b_{0} "
- x_{i} for the absolute zero divisors " a_{i} " in the construction of " a "
- $x_{i j}$ for the "arbitrary" elements " $b_{i j}$ " in the construction of " a "
- y_{i} for the "arbitrary" elements " b_{i} "
$\mathcal{L}[X]$ free Lie algebra,

$$
\overline{\mathcal{L}}[X]=\mathcal{L}[X] / \operatorname{Id}_{\mathcal{L}[X]}\left(\operatorname{ad}_{x_{i}}^{2} \mathcal{L}[X] \mid i \in \mathbb{N}\right)
$$

Construction of the $f(n, r)$:
We want $\operatorname{ad}_{\left[\left[a, b_{i}\right]\right.}^{f\left(n, \ldots, b_{k}\right]} b_{0}=0, a=\sum_{i=1}^{n}\left[\left[\left[a_{i}, b_{i_{1}}\right], \ldots, b_{i_{k_{i}}}\right]\right]$
$\overline{\mathcal{L}}[X]$ "free" with absolute zero divisors " x_{i} "
To imitate elements of the form $\left[\left[a, b_{1}\right], \ldots, b_{k}\right]$ we build the sets:
$A_{n, r}:=\left\{\sum_{i=1}^{n}\left[\left[\left[\left[\bar{x}_{i}, \bar{x}_{i 1}\right], \ldots, \bar{x}_{i_{i}}\right], \bar{y}_{1}\right], \ldots, \bar{y}_{k}\right] \mid 0 \leq k_{i} \leq n, 0 \leq k \leq r\right\}$.
Important: $A_{n, r} \subset K_{1}(\overline{\mathcal{L}}[X])$ and finite \Longrightarrow also $A_{n, r} \cup\left[A_{n, r}, x_{0}\right]$
$\Longrightarrow A_{n, r} \cup\left[A_{n, r}, x_{0}\right]$ generates a nilpotent subalgebra $D_{n, r}$ \Downarrow
$\exists f(n, r) \in \mathbb{N}$ such that $D_{n, r}^{f(n, r)}=0 \quad(r m k: f(n, r) \geq 3)$

Generalized m-sequence:

Definition

$\left\{c_{i}\right\}_{i \in \mathbb{N}}$ such that $c_{1} \in L$ and each c_{i+1} has form

$$
\operatorname{ad}_{c_{i}}^{q_{i}} x_{0}, \operatorname{ad}_{\left[c_{i}, x_{1}\right]}^{q_{i}} x_{0}, \text { or } \operatorname{ad}_{\left[\left[c_{i}, x_{1}\right], x_{2}\right]}^{q_{i}} x_{0}
$$

for some $x_{0}, x_{1}, x_{2} \in L$ and $q_{i}=f(i, 3 i+2) \leftarrow($ technical $)$

Remark:

$$
\begin{aligned}
& \operatorname{ad}_{c_{i}}^{q_{i} x_{0}} \in\left[c_{i},\left[c_{i},\left[c_{i}, L\right]\right] \subset\left[\left[\left[c_{i}, L\right], L\right], L\right]\right. \\
& \operatorname{ad}_{\left[c_{i}, x_{1}\right]}^{q_{i}} x_{0} \in\left[\left[c_{i}, x_{1}\right],\left[\left[c_{i}, x_{1}\right], L\right]\right] \subset\left[\left[\left[c_{i}, L\right], L\right], L\right] \\
& \operatorname{ad}_{\left[\left[c_{i}, x_{1}\right], x_{2}\right]}^{q_{i}} x_{0} \in\left[\left[\left[c_{i}, x_{1}\right], x_{2}\right], L\right] \subset\left[\left[\left[c_{i}, L\right], L\right], L\right]
\end{aligned}
$$

Why generalized m-sequences?

Proposition 1

$\left\{c_{i}\right\}_{i \in \mathbb{N}}$ with some $c_{i} \in K(L) \Rightarrow$ finite length

Proof: (transfinite induction)
if $c_{i} \in K_{1}(L), c_{i}$ in some $B_{n}(L)$ (assume $n \geq i$)
$c_{i+1} \in[[[c_{i}, \underbrace{L], L], L}_{3}], \quad c_{i+2} \in[[[c_{i+1}, \underbrace{L], L], L}_{3}] \subset[[[c_{i}, \underbrace{L], \ldots, L]}_{3 \cdot 2}]$,
so $c_{n} \in[[[c_{i}, \underbrace{L], \ldots, L]}_{3(n-i)}]$ hence $c_{n+1}=0$
(since $q_{n}=f(n, 3 n+2)$)

Why three types of elements in a generalized m-sequence?

Proposition 2

If $a \in L$ and $\exists q \in \mathbb{N}$ with

$$
\operatorname{ad}_{a}^{q} x_{0}=\operatorname{ad}_{\left[a, x_{1}\right]}^{q} x_{0}=\operatorname{ad}_{\left[\left[a, x_{1}\right], x_{2}\right]}^{q} x_{0}=0, \quad \text { for all } x_{0}, x_{1}, x_{2} \in L
$$

then $a \in K(L)$.
Proof: (work in $L / K(L)$, assume L nondegenerate and $a \neq 0$)

- either $b=a$ or $b \in[a, L]$ has index of ad-nilpotency 3
- consider $L_{b}=(L / \operatorname{ker}(b), \bullet), x \bullet y:=\frac{1}{2}[[x, b], y]$
- L_{b} is nilpotent of index $\leq q+1 \quad\left(\bar{x}^{(q+1, b)}=\frac{1}{2^{n-1}} \overline{\operatorname{ad}_{[x, b]}^{q} x}\right)$
- L_{b} radical in the sense of McCrimmon $+L_{b}$ nondegenerate
- $L_{b}=0 \Longrightarrow L=\operatorname{ker}(b),[b,[b, L]]=0$ CONTRADICTION

Proposition 3

$a \notin K(L) \Longrightarrow \exists$ infinite $\left\{c_{i}\right\}_{i \in \mathbb{N}}$ with $c_{0}=a$

Proof: (work in $L / K(L), a \neq 0)$
If $c_{i} \neq 0$ then $c_{i+1} \neq 0$: otherwise $\operatorname{ad}_{c_{i}}^{q_{i}} x_{0}=\operatorname{ad}_{\left[c_{i}, x_{1}\right]}^{q_{i}} x_{0}=\operatorname{ad}_{\left[\left[c_{i}, x_{1}\right], x_{2}\right]}^{q_{i}} x_{0}=0 \Longrightarrow c_{i}=0$

Theorem 1 (Proposition $1+$ Proposition 3)

$$
K(L)=\left\{a \in L \mid \text { every }\left\{c_{i}\right\}_{i \in \mathbb{N}} \text { with } c_{0}=a \text { is finite }\right\}
$$

Remember P str. prime ideal if L / P is prime and nondegenerate.
Proposition 4
$\left\{c_{i}\right\}_{i \in \mathbb{N}}$ infinite and P maximal with respect to $P \cap\left\{c_{i}\right\}_{i \in \mathbb{N}}=\emptyset$ \Downarrow
P is str. prime ideal
(notice that each $c_{i+1} \in\left[\operatorname{Id}_{L}\left(c_{i}\right), \operatorname{Id}_{L}\left(c_{i}\right)\right]$)

Theorem 2

$$
K(L)=\bigcap(\text { str. prime ideals of } L)
$$

Corollary
L nondegenerate \Longrightarrow subdirect product of str. prime algebras.

References:

- E. García, M. Gómez Lozano "A characterization of the Kostrikin radical of a Lie algebra" (preprint) http://homepage.uibk.ac.at/~c70202/jordan/ [287].
- E. Zelmanov "Lie algebras with an algebraic adjoint representation". Math. USSR Sbornik 49 (1984), 537-552.

