Borel and parabolic subalgebras of some locally finite Lie algebras

Elitza Gurova

International Workshop Infinite Dimensional Lie algebras

July 19-23, 2010

Outline

- Toral and Borel subalgebras of $gl(\infty)$
- Relationship to generalized flags
- Main theorems and examples on Borel subalgebras of $gl(\infty)$
- Parabolic subalgebras
- ► Comparison with subalgebras of gl(2[∞])

Basic definitions

▶ Let V and V_{*} be countable-dimensional vector spaces over C. Let

$$\langle \cdot, \cdot
angle : \mathit{V} imes \mathit{V}_*
ightarrow \mathbb{C}$$

be a nondegenerate pairing. Then $V \otimes V_*$ is an associative algebra such that

$$(v_1 \otimes w_1)(v_2 \otimes w_2) = \langle v_2, w_1 \rangle v_1 \otimes w_2$$

where $v_1, v_2 \in V$ and $w_1, w_2 \in V_*$. Then $g/(V, V_*)$ is the Lie algebra associated to $V \otimes V_*$, and $s/(V, V_*)$ is the commutator subalgebra of $g/(V, V_*)$.

• $gI(V, V_*)$ does not depend on the pairing and

$$gl(V, V_*) \cong gl(\infty).$$

▶ If $W \subset V$ then $\overline{W} := (W^{\perp})^{\perp}$ is the closure of W. A subspace W is closed if $W = \overline{W}$.

Toral subalgebras

Definition

An element of $gl(\infty)$ is **semisimple** if it is semisimple as a linear operator on the natural representation of $gl(\infty)$. A subalgebra $\mathfrak{t} \subset gl(\infty)$ is **toral** if all its elements are semisimple.

Proposition

(i) Every maximal toral subalgebra $\mathfrak t$ of $\mathsf{gl}(\infty)$ has the form

$$\mathfrak{t} = \bigoplus_{lpha \in \mathcal{A}} (\mathbb{C} u_{lpha}) \otimes (\mathbb{C} u_{lpha}^*)$$

where $\{u_{\alpha}\}\)$ and $\{u_{\alpha}^{*}\}\)$ are maximal sets of vectors in V and $V_{*}\)$ with the property that $\langle u_{\alpha}, u_{\beta}^{*} \rangle = \delta_{\alpha,\beta}$. Conversely, every such expression defines a maximal toral subalgebra of $gl(\infty)$. (ii) The centralizer $C(\mathfrak{t})$ of \mathfrak{t} has the form

 $C(\mathfrak{t}) = \mathfrak{t} \oplus (span\{u_{lpha}\})^{\perp} \otimes (span\{u_{lpha}^*\})^{\perp}$

Toral subalgebras

Proposition

Let t be a maximal toral subalgebra of $gl(\infty)$. The following are equivalent:

- (i) There is an exhaustion $\bigcup_i \mathfrak{g}_i$ of $gl(\infty)$ such that $\mathfrak{t} \cap \mathfrak{g}_i$ is a maximal toral subalgebra of \mathfrak{g}_i .
- (ii) $\mathfrak{t} = \bigoplus_{\alpha \in A} (\mathbb{C}u_{\alpha}) \otimes (\mathbb{C}u_{\alpha}^{*})$, where $\{u_{\alpha}\}$ and $\{u_{\alpha}^{*}\}$ is a pair of dual bases in V and in V_{*} .
 - A maximal toral subalgebra as above is splitting.
 - Example. The following is a non-splitting maximal toral subalgebra:

$$\mathfrak{t} = \bigoplus_{n \geq 2} \mathbb{C}(e_1 + e_n) \otimes \mathbb{C}(e_n^*)$$

人口 医水管 医水管 医水管

Borel subalgebras

Definition

- (i) A locally finite Lie algebra g is **locally solvable** if every finite subset of g is contained in a solvable subalgebra.
- (ii) A **Borel subalgebra** of g is a maximal locally solvable subalgebra.

Proposition

Let \mathfrak{b} be a Borel subalgebra of $gl(\infty)$. The following are equivalent:

- (i) b contains a splitting maximal toral subalgebra.
- (ii) There exists an exhaustion $\bigcup_i \mathfrak{g}_i$ of $gl(\infty)$ such that $\mathfrak{b} \cap \mathfrak{g}_i$ is a Borel subalgebra of \mathfrak{g}_i .
 - A Borel subalgebra as above is **splitting**.

Generalized flags

Definition. Let X be a vector space. A *chain* of subspaces in X is a set C of subspaces in X linearly ordered by inclusion.

A generalized flag in X is a chain of subspaces \mathfrak{F} in X satisfying the following properties:

- (i) each space $F \in \mathfrak{F}$ has an immediate predecessor or an immediate successor;
- (ii) for every $0 \neq x \in X$ there exists a pair $F', F'' \in \mathfrak{F}$, such that $x \in F'' \setminus F'$ and F'' is the immediate successor of F'.
 - A generalized flag 𝔅 is semiclosed if F' ∈ {F', F"} for every predecessor-successor pair (F', F").
 - ► A generalized flag F is *closed* if it is semiclosed and F'' is closed for every pair (F', F'').
 - A generalized flag \mathfrak{F} is strongly closed if $\overline{F} = F$ for every $F \in \mathfrak{F}$.

(日)

Generalized flags

Example:

Let dim $X = \aleph_0$ and let $\{x_q\}_{q \in \mathbb{Q}}$ be a basis of X enumerated by \mathbb{Q} . Let $\mathfrak{F} = \{F'_q, F''_q\}_{q \in \mathbb{Q}}$ be the following generalized flag:

Properties of \mathfrak{F} :

- ► No subspace F in S has both an immediate predecessor and an immediate successor.
- \mathfrak{F} is a maximal generalized flag but not a maximal chain.
- ▶ The unique maximal chain C which contains \mathfrak{F} is the chain $\{F'_r : r \in \mathbb{R}\} \cup \{F''_q : q \in \mathbb{Q}\} \cup \{0, X\}$, where $F'_r = \operatorname{span}\{x_s : s < r\}.$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

Main theorems

Theorem (I.Dimitrov, I.Penkov)

Let \mathfrak{g} be one of $gl(\infty)$ and $sl(\infty)$. Every Borel subalgebra \mathfrak{b} of \mathfrak{g} is the stabilizer of a unique maximal (semi-)closed generalized flag $\mathfrak{F}_{\mathfrak{b}}$ in V, and the correspondence

$$\mathfrak{b}\mapsto\mathfrak{F}_\mathfrak{b}$$

is a bijection between the set of Borel subalgebras in \mathfrak{g} and the set of maximal (semi-)closed generalized flags in V.

Theorem (I.Dimitrov, I.Penkov)

Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g} . The following are equivalent:

- (i) b is splitting.
- (ii) The unique b-stable maximal (semi-)closed generalized flag in V is strongly closed.

▲□ > ▲圖 > ▲ 圖 > ▲ 圖 >

Examples

(1) Let \mathfrak{F} be the generalized flag

$$0 \subset U_1 \subset U_2 \subset \cdots \subset U_n \subset \cdots \subset U \subset V$$

where $U_n = \operatorname{span}\{e_1 + e_2, \dots, e_1 + e_n\}$ for each *n* and $U = \bigcup_n U_n$. Then each U_n is closed and $\overline{U} = V$. Hence, \mathfrak{F} is closed but not strongly closed.

(2) Let $V = \operatorname{span}\{\widetilde{x}_q\}_{q\in\mathbb{Q}}$ and $V_* = \operatorname{span}\{x_q^*\}_{q\in\mathbb{Q}}$ where

 $\langle \tilde{x}_q, x_s^* \rangle = 1$ if q > s and 0 otherwise.

Then $V \otimes V_* \cong gl(\infty)$. Let $\mathfrak{F} = \{F'_q, F''_q\}_{q \in \mathbb{Q}}$ be: $F'_q = \operatorname{span}\{\tilde{x}_s : s < q\}$ $F''_q = \operatorname{span}\{\tilde{x}_s : s \le q\}$

Then \mathfrak{F} is a maximal closed generalized flag for which $\overline{F_q} = F_q''$ for each q. Moreover, $\mathfrak{b} = St_{\mathfrak{F}}$ coincides with its nilradical. Hence, \mathfrak{b} contains no nontrivial toral subalgebras.

A D F A B F A B F A B F

Parabolic subalgebras

Definition

- A subalgebra of a locally finite Lie algebra is parabolic if it contains a Borel subalgebra.
- ► Two semiclosed generalized flags \$\vec{v}\$ in V and \$\mathcal{G}\$ in V_{*} form a taut couple if the chain \$\vec{v}^{\perp}\$ is stable under St_{\$\mathcal{G}\$} and the chain \$\vartial{G}^{\perp}\$ is stable under St_{\$\vec{v}\$}.

Theorem (E.Dan-Cohen, I.Penkov)

Let \mathfrak{g} be one of $gl(\infty)$ and $sl(\infty)$. Let \mathfrak{p} be a parabolic subalgebra of \mathfrak{g} . Then there exists a unique taut couple $\mathfrak{F}, \mathfrak{G}$ such that

$$\mathfrak{p}_-\subset\mathfrak{p}\subset\mathfrak{p}_+$$

where $\mathfrak{p}_{+} = St_{\mathfrak{F}} \cap St_{\mathfrak{G}}$, $\mathfrak{p}_{-} = \mathfrak{n}_{\mathfrak{p}_{+}} + [\mathfrak{p}_{+}, \mathfrak{p}_{+}]$, and $\mathfrak{n}_{\mathfrak{p}_{+}}$ is the linear nilradical of \mathfrak{p}_{+} , i.e. the set of all nilpotent elements in the maximal locally solvable ideal of \mathfrak{p}_{+} . Moreover, $N_{\mathfrak{g}}(\mathfrak{p}) = N_{\mathfrak{g}}(\mathfrak{p}_{+}) = \mathfrak{p}_{+}$.

Comparison with $gl(2^{\infty})$

Similarities

- There are maximal toral subalgebras of gl(2[∞]) which cannot be exhausted by finite-dimensional maximal toral subalgebras.
- There are Borel subalgebras which cannot be exhausted by finite-dimensional Borel subalgebras.
- For every Borel subalgebra \mathfrak{b} of $g/(2^{\infty})$ there exists a maximal generalized flag \mathfrak{F} such that $\mathfrak{b} = St_{\mathfrak{F}}$.
- Differences
 - There are Borel subagebras which contain maximal splitting toral subalgebras but cannot be exhausted by finite-dimensional Borel subalgebras.
 - There are maximal strongly closed generalized flags whose stabilizers are not Borel subalgebras.

