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positive characteristic: interesting open problems.

Helmut Strade

1 The classification of simple finite dimensional
Lie algebras over algebraically closed fields of
characteristic p > 3

Many of the present results and open problems in locally finite dimensional
Lie algebra theory concern those algebras which are built out of simple finite
dimensional algebras, the locally simple Lie algebras. There are many more
simple finite dimensional algebras over fields of positive charcteristic than just
the classical ones. In the first part of my talk I will introduce these. Roughly
speaking, there are 3 different constructions to produce simple Lie algebras.
Throughout this talk we assume that F is an algebraically closed field of
positive charcteristic p > 3.

The classical algebras

We take the simple matrix Lie algebras and take as entries the elements of
F :

sl(n, F ), {A ∈ M(n, F ) | Λ(Av,w) + Λ(v,Aw) = 0 ∀v, w ∈ Fn},

where Λ is a nondegenerate form on Fn. The following Chevalley construction
yields Lie algebras over arbitrary fields. Let L be a finite dimensional simple
Lie algebra over C and H a CSA. There is a basis xα of L such that the
multiplication coefficients C∞

α,β given by

[xα, xβ ] = C∞
α,βx∞

are integers of absolute value less than 5. The Z-span LZ of a Chevalley basis
is a Z-subalgebra in L. Then LF := LZ ⊗Z F is a Lie algebra over F , having a
basis as above, the multiplication coefficients reduced mod(p). The algebra is
simple except LF

∼= Al, l ≡ −1 mod (p). In this case LF has a one-dimensional
center C = F (h1 +2h2 + · · ·+ lhl). Then LF /C is simple. These are the simple
classical Lie algebras

An (p 6 |n + 1), psl(n + 1) (p|n + 1), Bn, Cn, Dn, G2, F4, E6, E7, E8.
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Note that, by abuse of the characteristic 0 notation, in characteristic p the class
of simple classical Lie algebras includes the exceptional types. These Lie
algebras are related to algebraic groups. They are restricted.

The graded Cartan type Lie algebras

Let L denote an arbitrary Lie algebra, U(L) its universal enveloping algebra
and ∆ : U(L) −→ U(L)⊗ U(L) the coproduct in U(L). The dual space

U(L)∗ = HomF (U(L), F )

becomes a commutative and associative algebra if one sets

(fg)(u) := (f ⊗ g)(∆u), f ∈ U(L)∗, u ∈ U(L).

More precisely, U(L)∗ is a ”divided power algebra”. To describe such algebras
we introduce the following notation.

If we are given some multi-indices a, b ∈ Nm then we write

- a ≤ b if and only if ai ≤ bi for all i = 1, . . . ,m;

-
°a

b

¢
=

Qm
i=1

°ai

bi

¢
;

- |a| =
Pm

i=1 ai;

- τ(a) = (pa1 − 1, . . . pam − 1) ∈ Nm;

- εi = (0, . . . , 1, . . . 0) with 1 in the i-th slot;

- 1 = (1, . . . , 1)

Define O((m)) as the algebra of all formal sums

O((m)) =





X

a≥0

α(a)x(a) | a ∈ Nm, α(a) ∈ F






where the multiplication is given by the formula



X

a

α(a)x(a)








X

b

β(b)x(b)



 =




X

c

∞(c)x(c)





with
∞(c) =

X

0≤a≤c

α(a)β(c− a)
µ

c

a

∂
.

If n ∈ Nm then we set

O(m;n) =





X

0≤a≤τ(n)

α(a)x(a)





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and notice that thanks to the properties of binomial coefficients this subspace
is a finite-dimensional subalgebra in O((m)) of dimension p|n|.

Next we define the ”partial derivatives” @1, . . . , @n of the algebra O((m))
defined by

@i




X

(a)

α(a)x(a)



 =
X

(a)

α(a)x(a−εi).

Put

W ((m)) :=

(
mX

i=1

fi@i | fi ∈ O((m))

)

,

and also for any tuple n ∈ Nm we set

W (m;n) :=

(
mX

i=1

fi@i | fi ∈ O(m;n)

)

.

Now W (m;n) is an algebra of derivations of O(m;n). In the particular case
n1 = . . . = nm = 1 we have that O(m; 1) is isomorphic to the algebra of
”truncated polynomials”

F [X1, . . . ,Xm]/(Xp
1 , . . . ,Xp

m)

and W (m; 1) is the restricted Lie algebra of all derivations of O(m; 1).

The motivation for these constructions are quite natural: over C it makes
sense to consider x(a) ∼

Qm
i=1

1
ai!

xai
i . Then O((m)) ∼= C[[x1, . . . , xm]] is the

algebra of power series, @i is the ordinary i-th partial derivative and W ((m)) is
the Lie algebra of continuous derivations.

A) Witt algebras; type W .

The Lie algebras of the type W (m;n) form one of four families of ”graded Cartan
type” algebras called Witt algebras.

The algebra W (m;n) is a simple Lie algebra of dimension mp|n|. One obtains
a Z-grading of W (m;n) if one sets

deg(x(a)@i) = |a| − 1.

Let W (m;n)i denote the space of homogeneous elements of degree i. Then the
following relations take place:

W (m;n) =
|τ(n)|−1M

i=−1

W (m;n)i,

W (m;n)−1 =
mM

i=1

F@i,
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W (m;n)0 ∼= gl(m),

W (m;n)|τ(n)|−1 =
mM

i=1

Fx(τ(n))@i.

The subalgebra
W (m;n)(0) =

X

i≥0

W (m;n)i

is the only proper subalgebra of minimal codimension. Therefore it is uniquely
determined. As such it is invariant under all automorphisms of W (m;n).

B) Special Lie algebras; type S.

For m ≥ 3 we set

S(m;n) =

(
mX

i=1

fi@i ∈ W (m;n) |
mX

i=1

@i(fi) = 0

)

.

The derived algebra S(m;n)(1) is a simple Lie algebra of dimension

dim S(m;n)(1) = (m− 1)(p|n| − 1).

If we denote by Di,j the mapping O((m)) −→ W ((m)) given by

Di,j




X

(a)

α(a)x(a)



 =
X

(a)

α(a)x(a−εj)@i −
X

(a)

α(a)x(a−εi)@j

then
S(m;n)(1) =

X

1≤i<j≤m

Di,j(O(m;n)).

The algebras S(m;n) and S(m;n)(1) are graded subalgebras in W (m;n). One
has S(m;n)(1)0 ∼= sl(m).

C) Hamiltonian Lie algebras; type H.

In this section m = 2r. We define

j0 =
Ω

j + r 1 ≤ j ≤ r,
j − r r < j ≤ 2r σ(j) =

Ω
1, 1 ≤ j ≤ r,
−1, r < j ≤ 2r.

Now we set

H(2r;n) =

(
2rX

i=1

fi@i ∈ W (2r;n) | σ(j0)@i(fj0) = σ(i0)@j(fi0), 1 ≤ i, j ≤ r

)

.

We define a mapping DH : O(2r;n) −→ W (2r;n) by setting

DH(f) =
2rX

i=1

σ(j)@j(f)@j0 , f ∈ O(2r;n).
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Then
H(2r;n)(2) = span {DH(x(a)) | 0 < a < τ(n) >

is a simple algebra. The algebras H(2r;n), H(2r;n)(1) and H(2r;n)(2) are
graded subalgebras in W (2r;n). One has H(m;n)(2)0 ∼= sp(m).

D) Contact Lie algebras; type K.

Suppose m = 2r + 1 > 1. We define σ(j) and j0 as in C). We also define
DK : O((m)) −→ W ((m)) by setting DK(f) =

Pm
i=1 fi@i where fi is given by

the equations

fi = x(εi)@m(f) + σ(i0)@i0(f), i ≤ 2r,

fm = 2f −
2rX

i=1

x(εi)@i(f).

Set
K(m;n) = DK(O(m;n)).

Then K(m;n)(1) is a simple Lie algebra of dimension p|n| if m+3 6≡ 0 (mod (p))
and p|n| − 1 otherwise. One imposes a grading on K(m;n) by setting

deg(DK(x(a))) = |a|+ am − 2.

E) Melikian algebras; type M.

Given a Lie algebra M0 and an M0-module V the first Cartan prolongation of
the pair (V,M0) is

C(1)(V,M0) := {ϕ : V → M0 | ϕ(u)(v) = ϕ(v)(u) ∀ u, v ∈ V }.

If this first prolongation is nonzero it gives rise to infinite dimensional graded
Lie algebras

V ⊕ M0 ⊕ C(1)(V,M0)
k k ∪

M−1 ⊕ M0 ⊕ M1 −→

These are freely generated modulo the Lie relations given naturally by these 3
spaces. We are interested in homomorphic images of this Lie algebra of finite
dimension. This is the way Cartan proceeded to classify certain classes of
infinite dimensional Lie algebras having a filtration of depth 1 (i.e., L = L(−1)).
More generally, Kac investigates Lie algebras freely generated (modulo the
canonical relations) by ”local Lie algebras”

←− M−1 ⊕ M0 ⊕ M1 −→ .

Just by chance, as p = 5, there are finite dimensional homomorphic images
different from classical or Cartan type, which are simple Lie algebras. They
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have a grading of depth 3. This way the 2-parameter family of Melikian algebras
M(n1, n2) of dimension 5n1+n2+1 occur. As a vector space with some subtle
multiplication table it has the form

M(n1, n2) = W (2; (n1, n2))⊕W (2; (n1, n2))⊕O(2; (n1, n2)).

The filtered Lie algebras of Cartan type

Any grading L =
L

i∈Z Li defines a filtration on L if one sets L(j) =P
j≤i Li. Let L be a Cartan type Lie algebra with a grading as mentioned

before, or Melikian with the (not explicitely described) grading. It turns out
that the respective subalgebra L(0) is uniquely described as the only proper
subalgebra of minimal codimension (in case of Cartan type algebras) and with
the additional property that the filtration coming with it has depth 3.

We will be saying that L(0) =
P

i≥0 Li is the natural maximal subalgebra in
L. Now L(1) is the unique maximal ideal in L(0) whose action on L is nilpotent.
Besides,

L(−1) = {x ∈ L | [x,L(1)] ⊂ L(0)},
L(i+1) = {x ∈ L(i)|[x,L(−1)] ⊂ L(i)} for i ≥ 0,
L(i−1) = [L(i), L(−1)] + L(i) for i < 0,

so that L(0) uniquely determines this natural filtration. The length of the filtra-
tion

L = L(−r) ⊃ L(−r+1) ⊃ . . . ⊃ L(s) ⊃ {0}
can be given by the following

W (m;n) S(m;n)(1) H(m;n)(2) K(m;n)(1) M(n1, n2)

r 1 1 1 2 3

s |τ(n)| − 1 |τ(n)| − 2 |τ(n)| − 3 kτ(n)k,m + 3 6≡ 0(mod p),
kτ(n)k − 1,m + 3 ≡ 0(mod p)

3(5n1 + 5n2)− 7

The following definition describes the filtered Lie algebras of Cartan type.

Definition 1 Let L be a simple Lie algebra with filtration L = L(−r) ⊃ · · · ⊃
L(s) ⊃ {0}. If there exists X ∈ {W, S, H, K} and an embedding √ : gr L ↪→
X (m;n) of graded algebras, such that

X (m;n)(2) ⊂ √(gr L) ⊂ X (m;n),

then L is called a simple Cartan type Lie algebra of the type X .
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The compatibility property

The monomials x(a) are connected with a sequence of continuous mappings
u → u(j), (j ≥ 0) from O((m))(1) into O((m)) satisfying the conditions

u(0) = 1, u(1) = u,

(u + v)(j) =
jX

i=0

u(i)v(j−i),

u(i)u(j) =
µ

i + j

i

∂
u(i+j),

(u(i))(j) = ((ij)!/(i!)jj!)u(ij),

(uv)(j) = ujv(j)

for all u, v ∈ O((m))(1). Then x(a) =
Qm

i=1 x(ai)
i .

Let Autc O((m)) denote the group of continuous automorphisms of the al-
gebra O((m)) each of its elements φ satisfying the additional condition

φ(u(j)) = (φ(u))(j) ∀ u ∈ O((m))(1), j ≥ 1.

Each of the automorphism φ ∈ Autc O((m)) leaves W ((m)) invariant together
with its filtration, i.e.

φ ◦W ((m)) ◦ φ−1 ⊂ W ((m)), φ ◦W ((m))(i) ◦ φ−1 ⊂ W ((m))(i) for all i.

Definition 2 For any φ ∈ Autc O((m)) and X = W, S, H or K we set

X (m;n;φ) := φ ◦ X ((m)) ◦ φ−1 ∩W (m;n).

We have

Theorem 1 (The compatibility property) Every simple Lie algebra of Car-
tan type may be viewed as

L = X (m;n;φ)(2), X (m;n)(2) ⊂ gr L ⊂ X (m;n).

Here X and m are uniquely determined and n is determined up to some permu-
tation of indices. ✷

In the case of this theorem one has

X (m;n)(i) ⊂ X (m;n;φ)(2)(i) + W (m;n)(i+1), i ≤ p− 3.

As a result we obtain that
- X (m;n;φ)(2)(0) is the unique subalgebra of minimal codimension,
- X (m;n;φ)(2)(1) is the unique maximal ideal in X (m;n;φ)(2)(0) with nilpotent
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action on X (m;n;φ)(2) and
- X (m;n;φ)(2)(−1)/X (m;n;φ)(2)(0) is the unique irreducible X (m;n;φ)(2)(0)-
module.

This compatibility property means that the filtered Lie algebras of Cartan
type are filtered deformations of graded Cartan type algebras inside some Witt
algebras. These deformations are described by some cohomology groups. As a
result, every Witt algebra, Contact algebra or Melikian algebra is isomorphic
to its underlying graded algebra. Only the Special and Hamiltonian algebras
allow filtered deformations.

The final classification theorem at present is

Theorem 2 (Block-Premet-Strade-Wilson 2004) Suppose F is an alge-
braically closed field of characteristic p > 3 and L is a finite dimensional simple
Lie algebra over F . Then L is of classical, Cartan, or Melikian type. ✷

2 Two early results on locally finite dimensional
Lie algebras

In 1994 Bahturin and I published a paper ”Locally finite-dimensional simple Lie
algebras”. That paper resulted from a visit of Bahturin in Hamburg and seems
to be the first paper at all on that subject. In one of the theorems we used the
classification of finite dimensional simple Lie algebras in the status of that time
and proved

Theorem 3 Let L be a simple infinite dimensional locally finite dimensional
Lie algebra over an algebraically closed field of characteristic p > 7. Suppose
that there exists d = d(L) ∈ N with the following property:

- if U is a finite dimensional subalgebra in L and I is a maximal ideal of U
with a classical factor U/I, then dim U/I ≤ d.

Then there are a local system (Li) of L, X ∈ {W,S,H,K}, m ∈ N, a
sequence n1 ≤ n2 . . . of m-tuples, and automorphisms ϕi ∈ Autc O((m)) such
that Li

∼= X (m;ni;ϕi)(2) for all i. ✷

One can easily extend this to the case p ≥ 5.

In another attempt we constructed a direct limit of Witt algebras, where
quite opposite to the previous theorem the 0-components grow but not the
exponents of the monomials.

Theorem 4 Let 2m1 ≤ m2 and ρ : gl(m1) → gl(m2−m1) denote an embedding.
Identify

gl(m1) ∼=
m1X

i.j=1

Fxi@j and gl(m2 −m1) ∼=
m2X

i.j=m1+1

Fxi@j .
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The following formula defines an embedding ρ̄ : W (m1; 1) → W (m2; 1)

ρ̄(x(a)@i) := x(a)@i +
m1X

s=1

x(a−≤s)ρ(xs@i).

Restricting ρ̄ to the homogeneous degree 0 component gives an embedding
ρ̄0 : gl(m1) → gl(m2). Then ρ̄ extends the embedding ρ̄0.

3 Problems

In the context of Theorems 3 and 4 many problems arise which we have not
attacked at that time.

(1) The graded case: (managable)

Let X ∈ {W,S,H,K,M}, n1 ≤ n2 . . . be m-tuples, X (m;n1)(2) ⊂ X (m;n2)(2) · · ·
with the natural embedding induced by the inclusions

O(m;n1) ⊂ O(m;n2) · · ·

and L = X (m;n) with n ∈ (N ∪ {1})m the direct limit algebra.

(a) Does there exist a unique maximal subalgebra X (m;n)(0) of minimal codi-
mension? How can one characterize this invariantly? Is this a restricted subal-
gebra? A positive answer describes X and m invariantly.

(b) Under which conditions do sandwich elements exist? For instance, if (ni
j)i>0

are bounded for some indices j? If so, can X (m;n)(0) be characterized by sand-
wich elements?

(c) There are many publications on compatible root space decompositions,
mostly for direct limits of classical algebras by Penkov and others. Are there
compatible root space decompositions for suitable maximal tori in the present
cases? For example, the torus (

Pm
j=1 Fxj@j) ∩ X (m;n) should behave fine.

What results in charcteric 0 have analogues here?

(2) The non-graded case: (challenging)

Let L have a local system (Li) such that there are X ∈ {S,H}, m ∈ N, a
sequence n1 ≤ n2 . . . of m-tuples, and automorphisms ϕi ∈ Autc O((m)) such
that √i : Li

∼= X (m;ni;ϕi)(2) for all i. Suppose that the embeddings

Li ↪→ Li+1

↓ √i ↓ √i

X (m;ni;ϕi)(2) ↪→ X (m;ni+1;ϕi+1)(2)

and the isomorphisms √i respect the natural filtrations of the Cartan type al-
gebras.
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(a) What embeddings X (m;ni;ϕi)(2) ↪→ X (m;ni+1;ϕi+1)(2) can occur? Every
such embedding gives an embedding of the associated graded algebras. In par-
ticular, one would like to answer this question for the graded case.

(b) What are the filtered deformations of the algebras obtained by the process
in (1) by using graded algebras? Here one has to compute some low dimensional
cohomology groups. Which of these deformations yield locally finite dimensional
algebras?

(c) What does the compatibility property mean in this context?

(d) Investigate the problems (1a) - (1c) for the non-graded case.

(3) Extending direct limits of classical algebras: (quite interesting)

Let W ((ρ); 1) denote the direct limit for a family of embeddings ρi : gl(mi) →
gl(mi+1) as in Theorem 4.

(a) Are there respective extensions for
°
sl(mi)

¢
and

°
S(mi; 1)(1)

¢
, and sp(mi)

and
°
H(mi; 1)(2)

¢
, respectively?

(b) Show that every diagonal embedding of gl’s is obtained as a suitable ρ̄0.
More generally, can one characterize the embeddings obtained as a suitable ρ̄0?

(c) Does ρ̄ respect sandwich elements?

(d) Is W ((ρ); 1) restricted?

(e) Is it possible to characterize the direct limit of the natural maximal subal-
gebras by internal properties? If so, can one rediscover the original embeddings
ρi?

(f) Is it possible to characterize those direct limits of Witt algebras which arise
from diagonal embeddings and classify the extensions as well?

(g) What about finitary algebras and their extensions to Cartan type algebras?

(h) If the original embeddings are root reductive, are the extension so as well?
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