On Homomorphisms of Dialgonal Lie Algebras

Sergei Markouski

Bonne Bay Marine Station

July 22, 2010

Sergei Markouski (Jacobs University) Homomorphisms of Dialgonal Lie Algebras

Outline

Preliminaries

- Basic definitions
- Origin of the problems
- Locally simple diagonal Lie algebras
- Classification of locally simple subalgebras of diagonal Lie algebras
 - The statement of the theorem
 - Ideas of the proof
- Homomorphisms of diagonal Lie algebras

The base field is $\mathbb{C}.$ All Lie algebras considered are finite dimensional or countable dimensional.

Definition. A Lie algebra \mathfrak{g} is *locally finite* if any finite subset S of \mathfrak{g} is contained in a finite-dimensional Lie subalgebra $\mathfrak{g}(S)$ of \mathfrak{g} . If, for any S, $\mathfrak{g}(S)$ can be chosen simple, \mathfrak{g} is called *locally simple*.

Definition. An exhaustion

 $\mathfrak{g}_1 \subset \mathfrak{g}_2 \subset \cdots$

of a locally finite Lie algebra \mathfrak{g} is a direct system of finite-dimensional Lie subalgebras of \mathfrak{g} such that the direct limit Lie algebra $\varinjlim \mathfrak{g}_n$ is isomorphic to \mathfrak{g} .

Definition. An injective homomorphism $\varepsilon : \mathfrak{g}_1 \to \mathfrak{g}_2$ of finite-dimensional classical simple Lie algebras is called *diagonal* if there is an isomorphism of \mathfrak{g}_1 -modules

$$V_2 \downarrow \mathfrak{g}_1 \cong \underbrace{V_1 \oplus \ldots \oplus V_1}_{l} \oplus \underbrace{V_1^* \oplus \ldots \oplus V_1^*}_{r} \oplus \underbrace{T_1 \oplus \ldots \oplus T_1}_{z},$$

where V_i is the natural \mathfrak{g}_i -module (i = 1, 2), V_1^* is the dual of V_1 , and T_1 is the one-dimensional trivial \mathfrak{g}_1 -module. The triple (I, r, z) is called the *signature* of ε .

Definition. A locally simple Lie algebra \mathfrak{s} is *diagonal* if it admits an exhaustion by simple subalgebras \mathfrak{s}_i such that all inclusions $\mathfrak{s}_i \subset \mathfrak{s}_{i+1}$ are diagonal.

- Classification of pairs s ⊂ g of finite-dimensional semisimple Lie algebras up to g-conjugacy (Malcev, Dynkin).
 For classical s, g: the study of g-conjugacy classes of s is equivalent to the study of V ↓ s (V is the natural g-module).
- Description of locally semisimple Lie subalgebras of g ≅ gl(∞), sl(∞), so(∞), sp(∞) up to isomorphism. Description of V↓s and V*↓s in terms of the socle filtration (Dimitrov, Penkov).
- Classification of diagonal locally simple Lie algebras up to isomorphism (Baranov, Zhilinskii).

Let $\mathfrak{s} = \bigcup_i \mathfrak{s}_i$ be an infinite-dimensional diagonal Lie algebra.

The triple (l_i, r_i, z_i) denotes the signature of the homomorphism $\mathfrak{s}_i \to \mathfrak{s}_{i+1}$ and n_i denotes the dimension of the natural \mathfrak{s}_i -module.

We can assume that

- all \mathfrak{s}_i are of the same type X (X = A, C, or O);
- $r_i = 0$ if X is not A and $I_i \ge r_i$ if X = A;

-
$$n_1 = 1$$
, $l_1 = n_2$, $r_1 = z_1 = 0$.

We will write $\mathfrak{s} = X(\mathcal{T})$, where $\mathcal{T} = \{(I_i, r_i, z_i)\}_{i \in \mathbb{N}}$.

Diagonal Lie algebras

Set $s_i = l_i + r_i$, $c_i = l_i - r_i$, $S = (s_i)_{i \in \mathbb{N}}$, $C = (c_i)_{i \in \mathbb{N}}$. Then $\operatorname{Stz}(S) = s_1 s_2 \cdots$ and $\operatorname{Stz}(C) = c_1 c_2 \cdots$. Put $\delta_i = \frac{s_1 \cdots s_{n-1}}{n_i}$ and $\sigma_i = \frac{c_1 \cdots c_i}{s_1 \cdots s_i}$. The limit $\delta(\mathcal{T}) = \lim_{i \to \infty} \delta_i$ is called the *density index* of \mathcal{T} and the limit $\sigma(\mathcal{T}) = \lim_{i \to \infty} \sigma_i$ is called the *symmetry index* of \mathcal{T} .

Density types of \mathcal{T} :

- \mathcal{T} is *pure*, if $\delta_i = \delta_{i_0} > 0$ for all $i > i_0$;
- \mathcal{T} is *dense*, if $0 < \delta < \delta_i$ for all *i*;
- \mathcal{T} is *sparse*, if $\delta = 0$.

Symmetry types of \mathcal{T} :

- \mathcal{T} is one-sided, if $c_i = s_i$ for all $i \ge i_0$;
- T is *two-sided symmetric*, if there exist infinitely many $c_i = 0$;
- \mathcal{T} is two-sided weakly non-symmetric, if $\sigma(\mathcal{T}) = 0$;
- \mathcal{T} is two-sided strongly non-symmetric, if $\sigma(\mathcal{T}) > 0$.

Diagonal Lie algebras

Theorem (Baranov, Zhilinskii) Let X = A, C, or O and let $\mathcal{T} = \{(l_i, r_i, z_i)\}$. Then $X(\mathcal{T}) \cong X(\mathcal{T}')$ if and only if the following conditions hold.

- (\mathcal{A}_1) The sequences \mathcal{T} and \mathcal{T}' have the same density type.
- (A₂) Stz(S) ^Q Stz(S').
 (A₃) δ/δ['] ∈ Stz(S)/Stz(S') for dense and pure sequences.
 (B₁) The sequences T and T' have the same symmetry type.
 (B₂) Stz(C) ^Q Stz(C') for two-sided non-symmetric sequences.
 (B₃) There exists α ∈ Stz(S)/Stz(S') such that α σ/σ' ∈ Stz(C') for two-sided strongly non-symmetric sequences. Moreover, α = δ/δ' if in addition the triple sequences are dense or pure.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

Theorem (Baranov, Zhilinskii) Let $\mathcal{T} = \{(l_i, r_i, z_i)\}, \mathcal{T}' = \{(l'_i, 0, z'_i)\}, and <math>\mathcal{T}'' = \{(l''_i, 0, z''_i)\}.$

- (i) A(T) ≅ O(T') (resp., A(T) ≅ C(T')) if and only if T is two-sided symmetric, 2[∞] divides Stz(S'), and the conditions (A₁), (A₂), (A₃) hold.
- (ii) $O(\mathcal{T}') \cong C(\mathcal{T}'')$ if and only if 2^{∞} divides both $\operatorname{Stz}(\mathcal{S}')$, and $\operatorname{Stz}(\mathcal{S}'')$, and the conditions $(\mathcal{A}_1), (\mathcal{A}_2), (\mathcal{A}_3)$ hold.

Theorem (M)

- a) The three finitary Lie algebras $sl(\infty)$, $so(\infty)$, $sp(\infty)$ admit an injective homomorphism into any infinite-dimensional diagonal Lie algebra. An infinite-dimensional non-finitary diagonal Lie algebra admits no injective homomorphism into $sl(\infty)$, $so(\infty)$, $sp(\infty)$.
- b) Let $\mathfrak{s}_1 = X_1(\mathcal{T}_1)$, $\mathfrak{s}_2 = X_2(\mathcal{T}_2)$ be infinite-dimensional non-finitary diagonal Lie algebras. Set $S_i = \operatorname{Stz}(\mathcal{S}_i)$, $S = \operatorname{GCD}(S_1, S_2)$, $R_i = \div(S_i, S)$, $\delta_i = \delta(\mathcal{T}_i)$, $C_i = \operatorname{Stz}(\mathcal{C}_i)$, $C = \operatorname{GCD}(C_1, C_2)$, $B_i = \div(C_i, C)$, and $\sigma_i = \sigma(\mathcal{T}_i)$ for i = 1, 2. Then \mathfrak{s}_1 admits an injective homomorphism into \mathfrak{s}_2 if and only if the following conditions hold.
 - 1) R_1 is finite.
 - 2) \mathfrak{s}_2 is sparse if \mathfrak{s}_1 is sparse.

- 3) If \mathfrak{s}_1 and \mathfrak{s}_2 are non-sparse, both R_1 and R_2 are finite, and S is not divisible by an infinite power of any prime number, then $\epsilon \frac{R_1}{\delta_1} \leq \frac{R_2}{\delta_2}$ for ϵ as specified below. The inequality is strict if \mathfrak{s}_1 is pure and \mathfrak{s}_2 is dense. We have $\epsilon = 2$, except in the cases listed below, in which $\epsilon = 1$:
 - 3.1) $(X_1, X_2) = (C, C)$, (O, O), (C, A), (O, A), and $(X_1, X_2) = (A, A)$ with both \mathfrak{s}_1 and \mathfrak{s}_2 being one-sided;
 - 3.2) $(X_1, X_2) = (A, A)$, B_1 is finite, either \mathfrak{s}_1 is one-sided and \mathfrak{s}_2 is two-sided non-symmetric or \mathfrak{s}_2 is two-sided weakly non-symmetric and \mathfrak{s}_1 is two-sided non-symmetric;
 - 3.3) $(X_1, X_2) = (A, A)$, B_1 is finite, both \mathfrak{s}_1 and \mathfrak{s}_2 are two-sided strongly non-symmetric, either B_2 is infinite or C is divisible by an infinite power of any prime number;
 - 3.4) $(X_1, X_2) = (A, A)$, both B_1 and B_2 are finite, both \mathfrak{s}_1 and \mathfrak{s}_2 are two-sided strongly non-symmetric, *C* is not divisible by an infinite power of any prime number, and $\frac{R_1\sigma_1}{R_1} \ge \frac{R_2\sigma_2}{R_2}$.

Ideas of the proof $(\mathrm{sl}(\infty) ightarrow$ pure one-sided)

$$\begin{aligned} \mathrm{sl}(2) &\longrightarrow \cdots \longrightarrow \mathrm{sl}(k) \longrightarrow \mathrm{sl}(k+1) \longrightarrow \cdots \\ \theta_2 \bigg| & \theta_k \bigg| & \theta_{k+1} \bigg| \\ \mathrm{sl}(n_1 n_2) &\longrightarrow \cdots \longrightarrow \mathrm{sl}(n_1 \cdots n_k) \longrightarrow \mathrm{sl}(n_1 \cdots n_{k+1}) \longrightarrow \cdots \\ & \text{We choose } \theta_k \text{ such that as } \mathrm{sl}(k) \text{-modules} \\ V_k \downarrow \mathrm{sl}(k) &\cong a_0^k \bigwedge^0(F_k) \oplus a_1^k \bigwedge^1(F_k) \oplus \cdots \oplus a_k^k \bigwedge^k(F_k). \\ & a_0^0 \\ a_0^1 a_1^1 \\ a_0^2 a_1^2 a_2^2 \\ & \cdots \end{aligned}$$

with the conditions

$$a_i^k + a_{i+1}^k = n_k a_i^{k-1}, \ k \geq 1 \ ext{and} \ a_0^0 = 1.$$

July 22, 2010 12 / 15

Ideas of the proof (sparse one-sided eq pure one-sided)

- Diagonal and non-diagonal homomorphisms
- Natural representations of diagonal Lie algebras
 A natural g-module is any non-zero g-module which can be constructed as a direct limit V = lim V_n, where V_n is the natural g_n-module.
- Inductive systems

Thank you for your attention!