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Basic definitions

The base field is C. All Lie algebras considered are finite dimensional or
countable dimensional.

Definition. A Lie algebra g is locally finite if any finite subset S of g is
contained in a finite-dimensional Lie subalgebra g(S) of g. If, for any S ,
g(S) can be chosen simple, g is called locally simple.

Definition. An exhaustion

g1 ⊂ g2 ⊂ · · ·

of a locally finite Lie algebra g is a direct system of finite-dimensional Lie
subalgebras of g such that the direct limit Lie algebra lim−→ gn is isomorphic
to g.
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Basic definitions

Definition. An injective homomorphism ε : g1 → g2 of finite-dimensional
classical simple Lie algebras is called diagonal if there is an isomorphism of
g1-modules

V2 ↓ g1 ∼= V1 ⊕ . . .⊕ V1︸ ︷︷ ︸
l

⊕V ∗1 ⊕ . . .⊕ V ∗1︸ ︷︷ ︸
r

⊕T1 ⊕ . . .⊕ T1︸ ︷︷ ︸
z

,

where Vi is the natural gi -module (i = 1, 2), V ∗1 is the dual of V1, and T1

is the one-dimensional trivial g1-module. The triple (l , r , z) is called the
signature of ε.

Definition. A locally simple Lie algebra s is diagonal if it admits an
exhaustion by simple subalgebras si such that all inclusions si ⊂ si+1 are
diagonal.
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Origin of the problems

Classification of pairs s ⊂ g of finite-dimensional semisimple Lie
algebras up to g-conjugacy (Malcev, Dynkin).
For classical s, g: the study of g-conjugacy classes of s is equivalent
to the study of V ↓ s (V is the natural g-module).

Description of locally semisimple Lie subalgebras of
g ∼= gl(∞), sl(∞), so(∞), sp(∞) up to isomorphism.
Description of V ↓ s and V ∗ ↓ s in terms of the socle filtration
(Dimitrov, Penkov).

Classification of diagonal locally simple Lie algebras up to
isomorphism (Baranov, Zhilinskii).
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Diagonal Lie algebras

Let s = ∪isi be an infinite-dimensional diagonal Lie algebra.

The triple (li , ri , zi ) denotes the signature of the homomorphism si → si+1

and ni denotes the dimension of the natural si -module.

We can assume that

- all si are of the same type X (X = A, C , or O);

- ri = 0 if X is not A and li ≥ ri if X = A;

- n1 = 1, l1 = n2, r1 = z1 = 0.

We will write s = X (T ), where T = {(li , ri , zi )}i∈N.

Sergei Markouski (Jacobs University) Homomorphisms of Dialgonal Lie Algebras July 22, 2010 6 / 15



logo

Diagonal Lie algebras

Set si = li + ri , ci = li − ri , S = (si )i∈N, C = (ci )i∈N. Then
Stz(S) = s1s2 · · · and Stz(C) = c1c2 · · · .
Put δi = s1···sn−1

ni
and σi = c1···ci

s1···si . The limit δ(T ) = lim
i→∞

δi is called the

density index of T and the limit σ(T ) = lim
i→∞

σi is called the symmetry

index of T .

Density types of T :

- T is pure, if δi = δi0 > 0 for all i > i0;

- T is dense, if 0 < δ < δi for all i ;

- T is sparse, if δ = 0.

Symmetry types of T :

- T is one-sided, if ci = si for all i ≥ i0;

- T is two-sided symmetric, if there exist infinitely many ci = 0;

- T is two-sided weakly non-symmetric, if σ(T ) = 0;

- T is two-sided strongly non-symmetric, if σ(T ) > 0.
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Diagonal Lie algebras

Theorem (Baranov, Zhilinskii) Let X = A, C , or O and let
T = {(li , ri , zi )}. Then X (T ) ∼= X (T ′) if and only if the following
conditions hold.

(A1) The sequences T and T ′ have the same density type.

(A2) Stz(S)
Q∼ Stz(S ′).

(A3) δ
δ′ ∈

Stz(S)
Stz(S′) for dense and pure sequences.

(B1) The sequences T and T ′ have the same symmetry type.

(B2) Stz(C)
Q∼ Stz(C′) for two-sided non-symmetric sequences.

(B3) There exists α ∈ Stz(S)
Stz(S′) such that α σ

σ′ ∈
Stz(C)
Stz(C′) for two-sided strongly

non-symmetric sequences. Moreover, α = δ
δ′ if in addition the triple

sequences are dense or pure.
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Diagonal Lie algebras

Theorem (Baranov, Zhilinskii) Let T = {(li , ri , zi )}, T ′ = {(l ′i , 0, z
′
i )}, and

T ′′ = {(l ′′i , 0, z
′′
i )}.

(i) A(T ) ∼= O(T ′) (resp., A(T ) ∼= C (T ′)) if and only if T is two-sided
symmetric, 2∞ divides Stz(S ′), and the conditions (A1), (A2), (A3)
hold.

(ii) O(T ′) ∼= C (T ′′) if and only if 2∞ divides both Stz(S ′), and Stz(S ′′),
and the conditions (A1), (A2), (A3) hold.
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The statement of the theorem

Theorem (M)

a) The three finitary Lie algebras sl(∞), so(∞), sp(∞) admit an
injective homomorphism into any infinite-dimensional diagonal Lie
algebra. An infinite-dimensional non-finitary diagonal Lie algebra
admits no injective homomorphism into sl(∞), so(∞), sp(∞).

b) Let s1 = X1(T1), s2 = X2(T2) be infinite-dimensional non-finitary
diagonal Lie algebras. Set Si = Stz(Si ), S = GCD(S1, S2),
Ri = ÷(Si , S), δi = δ(Ti ), Ci = Stz(Ci ), C = GCD(C1,C2),
Bi = ÷(Ci ,C ), and σi = σ(Ti ) for i = 1, 2. Then s1 admits an
injective homomorphism into s2 if and only if the following conditions
hold.

1) R1 is finite.
2) s2 is sparse if s1 is sparse.
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The statement of the theorem

3) If s1 and s2 are non-sparse, both R1 and R2 are finite, and S is not

divisible by an infinite power of any prime number, then εR1
δ1
≤ R2

δ2
for

ε as specified below. The inequality is strict if s1 is pure and s2 is
dense. We have ε = 2, except in the cases listed below, in which
ε = 1:

3.1) (X1,X2) = (C ,C ), (O,O), (C ,A), (O,A), and (X1,X2) = (A,A) with
both s1 and s2 being one-sided;

3.2) (X1,X2) = (A,A), B1 is finite, either s1 is one-sided and s2 is two-sided
non-symmetric or s2 is two-sided weakly non-symmetric and s1 is
two-sided non-symmetric;

3.3) (X1,X2) = (A,A), B1 is finite, both s1 and s2 are two-sided strongly
non-symmetric, either B2 is infinite or C is divisible by an infinite power
of any prime number;

3.4) (X1,X2) = (A,A), both B1 and B2 are finite, both s1 and s2 are
two-sided strongly non-symmetric, C is not divisible by an infinite
power of any prime number, and R1σ1

B1
≥ R2σ2

B2
.
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Ideas of the proof (sl(∞)→ pure one-sided)

sl(2)

θ2
��

// . . . // sl(k)

θk
��

// sl(k + 1)

θk+1

��

// . . .

sl(n1n2) // . . . // sl(n1 · · · nk) // sl(n1 · · · nk+1) // . . .

We choose θk such that as sl(k)-modules
Vk ↓ sl(k) ∼= ak0

∧0(Fk)⊕ ak1
∧1(Fk)⊕ · · · ⊕ akk

∧k(Fk).

a00
a10 a11

a20 a21 a22
. . .

with the conditions

aki + aki+1 = nkak−1i , k ≥ 1 and a00 = 1.
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Ideas of the proof (sparse one-sided 6→ pure one-sided)

sl(n1)

θ1
��

// . . . // sl(ni )

θi
��

(li ,0,zi ) // sl(ni+1)

θi+1

��

// . . .

sl(m1) // . . . // sl(m1 · · ·mi )
(mi+1,0,0) // sl(m1 · · ·mi+1) // . . .

Vi ↓ sl(ni ) ∼=
⊕

λ∈Hi
Fλ
ni
⊕ · · · ⊕ Fλ

ni︸ ︷︷ ︸
tλ

, di = max
λ∈Hi

(λ1 − λni ).

Using branching rules we prove that di ≥ di+1. Denote d = lim di .

Then λd+1 = λd+2 = · · · = λni−d for λ ∈ Hi for large enough i , which

yields I (θi ) ≤
c0ni

n2
i − 1

m1 · · ·mi .

By calculating I
sl(m1···mi )
sl(n1)

in two ways we get
l1···li−1

ni
≥ c .
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Homomorphisms of diagonal Lie algebras

Diagonal and non-diagonal homomorphisms

Natural representations of diagonal Lie algebras

A natural g-module is any non-zero g-module which can be
constructed as a direct limit V = lim−→Vn, where Vn is the natural
gn-module.

Inductive systems
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The end

Thank you for your attention!
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