A SHORT PROOF OF ZELMANOV’S THEOREM ON LIE ALGEBRAS
WITH AN ALGEBRAIC ADJOINT REPRESENTATION
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ABSTRACT. Zelmanov’s theorem on Lie Pl-algebras with an algebraic adjoint representation
is here revisited. New tools and recent results on Jordan structures in Lie algebras are used
to shorten and simplify the proof.

1. INTRODUCTION

A celebrated theorem due to Zelmanov [16] proves that a Lie algebra over a field of char-
acteristic zero with an algebraic adjoint representation and satisfying a polynomial identity
is locally finite-dimensional. In this note we shorten and simplify the proof of this result by
using new tools. Thus, we replace Jordan pairs by Jordan algebras at a Jordan element [5],
which fit in much better with the transference between Lie and Jordan properties. Also, we
use the socle theory [4], the structure theorem of simple finitary Lie algebras [1], and the fact,
proved in [8], that any nondegenerate Lie algebra is a subdirect product of strongly prime Lie
algebras, which allows us to reduce the proof to the strongly prime case, thus avoiding the
difficulty in the original Zelmanov’s proof (see at the bottom of page 550 of [16]) of transfer-
ring primitive ideals of the semiprimitive Jordan pair defined by a finite grading in the Lie
algebra L to the whole L. Thus, the deep results on Lie algebras with finite gradings [16,
pages 543-548] needn’t be used in this new approach.

2. LIE ALGEBRAS AND JORDAN ALGEBRAS

1. Throughout this note, and unless specified otherwise, we will be dealing with Lie algebras
L [10], with [x,y] denoting the Lie bracket and ad, the adjoint map determined by z, and
with Jordan algebras J [11], with Jordan product z -y, multiplication operators A, : y +— x -y,
and quadratic operators U, = 2)\2 — \,2, over a field ® of characteristic 0. We set

[z1] ;=21 and [x1,29,...,2,]) = |21, [22, ..., 24]]
forn > 1 and z1,...x, € L. Similarly, we set

forn>1and z1,...,z, € J.
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Lemma 2.1. For each positive integer n there exists a function f, : S, — {0,1,—1} such
that, for any x1,x2,...%n,y in any Lie algebra L,

a‘d[ml,...,xn}y = Z fn(o-)[xa(l)v <y Lo(n)s y]
O’GSn
Proof. By induction on n. The case n =1 is trivial. Now
ad[asl,:vz,...,:anrl]y = ad[xl,[mg,...,anrlHy = ad:uad[mg,“.,xmrl]y - ad[mg,...,zn+1]adx1y'

Hence, by the induction hypothesis,

adyy, o)y = D Fal0)@1,200@) - To(nan) Ul
O’GSn
- Z fn(o-)[mo(Q)a <oy Lo(ntl)s L1 y}
gESy
= Z fn—l-l(T)[xT(l)a < Tr(nd)s y]
TESH+1

g

2. An inner ideal of J is a vector subspace B of J such that UgJ C B. Similarly, an inner
ideal of L is a vector subspace B of L such that [B,[B, L]] C B. An abelian inner ideal of L
is an inner ideal B which is also an abelian subalgebra, i.e., [B, B] = 0. Natural examples of
abelian inner ideals occur in finite gradings: The extreme subspaces L, and L_, of a finite
grading in L (see [16, page 543]) are abelian inner ideals of L.

3. An element x € L is called Engel if ad, is a nilpotent operator. In this case, the nilpotence
index of ad, is called the index of z. Engel elements of index at most 3 are called Jordan
elements. Clearly, any element of an abelian inner ideal is a Jordan element. Conversely, by
[3, Lemma 1.8], any Jordan element x generates the abelian inner ideal adiL. A good reason
for this terminology is the following analogue of the fundamental identity for Jordan algebras:

2 2,92, 12
ad; a2y = adzadyad;

which holds for any Jordan element x and any y € L [3, Lemma 1.7(iii)]. Another reason is
given in the next proposition [5, Theorem 2.4].

Proposition 2.2. Let a € L be a Jordan element. Then L with the new product defined by
gy = %[[z,a],y] is a nonassociative algebra denoted by L¥), such that

(i) Kerpa := {x € L|[a, [a,z]] = 0} is an ideal of L(*).
(ii) L, := L /Kerpa is a Jordan algebra, called the Jordan algebra of L at a.

4. A well-known lemma due to Kostrikin [12, Lemma 2.1.1] provides a method to construct
Jordan elements by means of Engel elements, namely, if z € L is an Engel element of index
n then, for any a € L, ad” 'a is Engel of index < n — 1. Recently, Garcfa and Gémez have
given the following refinement of this result [7, Theorem 2.3 and Corollary 2.4].

Lemma 2.3. If x € L is an Engel element of index n, then adgflL 18 an abelian inner ideal
of L. Hence, ad"” 'a is a Jordan element for any a € L.
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5. An element z € J is called an absolute zero divisor if U, = 0. Thus J is said to be
nondegenerate if it has no nonzero absolute zero divisors, semiprime if UgB = 0 implies
B = 0, and prime if UgC = 0 implies B = 0 or C' = 0, for any ideals B, C' of J. Similarly,
given a Lie algebra L, x € L is an absolute zero divisor of L if adi = 0, L is nondegenerate
if it has no nonzero absolute zero divisors, semiprime if [B, B] = 0 implies B = 0, and prime
if [B,C] = 0 implies B = 0 or C' = 0, for any ideals B,C of L. A Jordan or Lie algebra is
strongly prime if it is prime and nondegenerate. Simplicity, for both Jordan and Lie algebras,
means nonzero product and the absence of nonzero proper ideals.

6. The adjoint representation of a Lie algebra L is said to be algebraic if ad, is an algebraic
operator for each x in L. It has proved in [14] that a Lie algebra whose adjoint representation
is algebraic contains a maximal locally finite-dimensional ideal and the quotient algebra over
this ideal has no nonzero locally finite-dimensional ideals.

7. Following [12, Definition 5.4.1], the least ideal of a Lie algebra L whose associated quotient
algebra is nondegenerate is called the Kostrikin radical of L. We denote it by K(L). Put
Ky(L) = 0 and let K;(L) the ideal generated by all absolute zero divisors. Using transfinite
induction we define a nondecreasing chain of ideals Ko (L) by putting Ko (L) = Us_,, Kp(L)
if v is a limit ordinal, and K, (L)/Ka—1(L) = K1(L/Ka—1(L)) otherwise. It is obvious that
K(L) = U, Ka(L).

The following result, proved by Grishkov in [9], can be found translated to English in [12,
Theorem 5.4.2].

Theorem 2.4. Let L be a Lie algebra over a field of characteristic zero. Then K1(L) is locally
nilpotent. Hence, simple Lie algebras over a field of characteristic zero are nondegenerate.

The following characterization of the Kostrikin radical was proved in [8, Theorem 3.10].

Theorem 2.5. The Kostrikin radical K(L) of a Lie algebra L over a field of characteristic
zero s the intersection of all strongly prime ideals of L. Therefore, L is nondegenerate if, and
only if, it is a subdirect product of strongly prime Lie algebras.

8. The socle of a nondegenerate Jordan algebra is the sum of all its minimal inner ideals
[13]. The socle of a nondegenerate Lie algebra L, Soc L, is defined as the sum of all minimal
inner ideals of L [4]. By [13, Theorem 17] (for Jordan algebras) and [4, Theorem 2.5] (for Lie
algebras), the socle of a nondegenerate Jordan algebra or Lie algebra is the direct sum of its
minimal ideals, each of which is a simple Jordan or Lie algebra.

9. Let L be a Lie algebra over a field ®.

(i) L is said to be finitary (over ®) if it is a subalgebra of the Lie algebra fgl(X) consisting
of all finite rank operators on a vector space X over ®.

(ii) A nonzero element z € L is said to be extremal if ad2L = ®z, that is, if it generates a
one-dimensional inner ideal.

Infinite dimensional simple finitary Lie algebras over a field ® of characteristic zero were
described by Baranov in [1, Theorem 1.1]. If, additionally, ® is algebraically closed, we have
the following elementary characterization [4, Corollary 5.5].

Theorem 2.6. Let L be a simple Lie algebra over an algebraically closed field ® of charac-
teristic zero. Then L is finitary if, and only if, it contains an extremal element.
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10. Let A any nonassociative algebra over a field F'. Then F' is said to be a large field for A
if card F' > dimp A + 1.

The proof of the following useful result, known as Amitsur’s cardinality trick, can be found
in [11, Proposition 4.5.9].

Proposition 2.7. Let J be a division Jordan algebra over a large algebraically closed field F.
Then J = F1.

Corollary 2.8. Let L be a nondegenerate Lie algebra over a large algebraically closed field F
of characteristic zero. Then any abelian minimal inner ideal B of L is one-dimensional, so
any nonzero element of B is extremal.

Proof. Let x be a nonzero element of B. Then ad2L = B and z is a Jordan element. By [5,
(2.14)] together with the minimality of B, the Jordan algebra L, of L at x has no nonzero
proper ideals, that is, it is a division Jordan algebra, and by [5, Proposition 2.15(ii)], any y € L
such that [[z,y],z] = 2z yields the identity element 3 of L,. By Proposition 2.7, L, = F7,
and hence B = ad2L = Fx. 0

3. THE THEOREM

Every finitary Lie algebra L < fgl(X) (over a field ®) has an algebraic adjoint representa-
tion. Indeed, any finite rank operator a € F(X) is algebraic and hence the left multiplication
Ag : b — ab and the right multiplication p, : b+ ba, b € F(X) are algebraic operators, which
implies that ad, = A\, — pg is algebraic, since [A4, po] = 0. Moreover, if ® has characteristic
zero and L is simple, then we can use [1, Theorem 1.1] to prove that L is finite-dimensional
whenever it satisfies a polynomial identity. As will be seen below, the converse is true for
strongly prime Lie algebras over a large algebraically closed field of characteristic zero.

Lemma 3.1. Assume that ® is an algebraically closed field of characteristic zero and let L be
a Lie algebra over ®. If there exists a monzero element in L whose adjoint is algebraic, then
L contains a nonzero Jordan element.

Proof. Let x be a nonzero element of L such that ad, is algebraic. Then ad, has a Jordan-
Chevalley decomposition in Endg L [10, Section 2.4.2]. If z is Engel of index, say n, we have
by Lemma 2.3 together with the nondegeneracy of L that adﬁ_la is a nonzero Jordan element
for some a € L. Otherwise, the semisimple part of ad,, which is a derivation of L, is nonzero
and hence it yields a nontrivial finite grading on L. As previously noted, any element in any
of the extreme subspaces of a finite grading is actually a Jordan element. 0

Proposition 3.2. Let L # 0 be a strongly prime Lie algebra over an algebraically closed
field F' of characteristic zero which is large for L. If L contains a nonzero Jordan element
and satisfies a polynomial identity of degree n, then L is isomorphic to one of the algebras
GQ) F47E67 E7a E87A7“; B’I’y CT; or DT7 r< [’I?,/Q]

Proof. Let a € L be a nonzero Jordan element. By [6, Theorem 2.2(i)], the Jordan algebra L,
of L at a inherits strong primeness of L. Moreover, if

P(Z11, - Tmry) = Q1[T11, -, Tiey | F oo O[Tt - T
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is a polynomial identity for L, then
ady(

acn,...,acm,rm)y

is also a polynomial identity for L, where y is a new variable, y # x;;, forall1 <¢ <mand 1 <
Ji < 1. Then, by Lemma 2.1, L satisfies a polynomial identity which is a linear combination
of monomials of the form [z} ,... ;. ,y]. Replacing in each of these monomials, z;, by [z}, ,al
yields a polynomial identity for the Jordan algebra L, which is a linear combination of the
Jordan monomials xj, ---x;, -y. Thus L, is a strongly prime Jordan Pl-algebra. Let Z(L,)
denote the center of L,. By [15, Theorems 5 and 7], L, has nonzero center and Z(L,) 'L,
is a simple Jordan algebra containing minimal inner ideal. Since F' is large for L, it is also a
large field for the Jordan algebra L,. Hence, by Atmisur’s cardinality trick, Proposition 2.7,
the field of fractions Z(L,) "1 Z(L,) is equal to F, and L, itself is a simple Jordan algebra with
nonzero socle. Since minimal inner ideals of L, give rise to abelian minimal inner ideals of L [5,
Proposition 2.15(iii)], L contains abelian minimal inner ideals, and hence extremal elements
by Corollary 2.8. Since L is strongly prime, SocL is a simple Lie algebra, [4, Theorem
2.5(i)], containing extemal elements, so Soc L is finitary by Theorem 2.6. We claim that
Soc L is actually finite-dimensional. Otherwise, by Baranov’s structure theorem for infinite-
dimensional simple finitary Lie algebras over an algebraically closed field of characteristic zero
[1, Corollary 1.2], for any positive interger m, Soc L contains a subalgebra isomorphic to either
A, Cy or Dy, which leads to a contradiction, since no matrix algebra M, (F) satisfies an
identity of degree less than 2r and the Lie algebra M, (F)~ can be embedded in each one of
the simple Lie algebras A,, C,, or D,. Thus Soc L is isomorphic to one of the simple finite-
dimensional Lie algebra listed in the claim of the proposition. Finally, L can be embedded
in Der(Soc L) via the adjoint representation, and hence L = Soc L since derivations of simple
finite-dimensional Lie algebras over a field of characteristic zero are inner. O

Remark 3.3. It is possible to prove that Soc L is finite-dimensional, c.f. Proposition 3.2,
without dealing with finitary algebras. The mere existence of an extremal element implies
by [16, Lemma 15] that Soc L is locally finite-dimensional, and Bakthturin proves in [2] that
a simple Lie algebra (over a field of characteristic zero) which is locally finite-dimensional
and satisfies a nontrivial identity over its centroid is finite-dimensional over its centroid. By
Proposition 2.7, the centroid of Soc L coincides with F'; hence Soc L is finite-dimensional.

Proposition 3.4. Let L be a nondegenerate Lie algebra over an algebraically closed field
F of characteristic zero which is large for L. If L satisfies a polynomial identity of degree
n and it is spanned by elements with an algebraic adjoint, then L is a subdirect product
of finite-dimensional simple Lie algebras each of which isomorphic to one of the algebras
Go, Fy, Eg, E7, Es, Ay, By, Cr, or D,, where r < [n/2].

Proof. By Theorem 2.5, L is a subdirect product of a family {L;};c; of strongly prime Lie
algebras L;. Moreover, each L; satisfies a polynomial identity of degree n and it is spanned
by elements with an algebraic adjoint. Hence, by Proposition 3.2 together with Lemma 3.1,
L; is isomorphic to either Go, Fy, Fg, E7, Eg, A, B, C,, or D,, where r < [n/2]. O

Theorem 3.5. (Zelmanov) Let L be a Lie algebra over a field ® of characteristic zero. If L
has an algebraic adjoint representation and satisfies a polynomial identity, then L is locally
finite-dimensional.
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Proof. As in the original Zelmanov’s proof, we make two reductions and take an algebraically
closed extension of ® of sufficiently large cardinality:

(i) By factorizing by the largest locally finite-dimensional ideal (6), it suffices to prove that
L contains a nonzero locally finite-dimensional ideal. (ii) Since K;(L) is locally nilpotent (see
Theorem 2.4), it is locally finite-dimensional, so we may suppose that L is nondegenerate. Let
F be an algebraically closed extension of @ of sufficiently large cardinality: card F' > dimg L+1
and set L = L ®¢ F. By [16, Propositon 2|, K(L)NL C K(L) = 0, and hence we may assume
that L is embedded in the quotient algebra L = L/K(L). Then L is a nondegenerate Lie
algebra (over F'). Moreover, L satisfies a polynomial identity (of degree, say n) and it is
spanned by elements with an algebraic adjoint. The desired conclusion is now achieved in a
quite simple way:

By Proposition 3.4, L is a subdirect product of finite-dimensional simple Lie algebras each
of which isomorphic to either Go, Fy, Eg, E7, Es, Ay, By, Cp, or D,, v < [n/2]. Since L is
embedded in L, it satisfies all the identities of a finite-dimensional Lie algebra Fy @ Eg ® A,,.
Hence L is locally-finite dimensional by [12, Theorem 5.4.6]. O
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