
Solutions for the AAC Competition Problems 2010

1. We will say that a matrix is sensitive if its rank changes upon any change of
any of its entries. What are the possible ranks of sensitive n× n matrices

a) over the field of complex numbers?

b) over an arbitrary field?

Solution:
a) Let A be an n × n matrix over C. Let cij be the (i, j)-cofactor of A. Then
detA = cijaij + dij where dij =

∑
k 6=j cikaik. Note that neither cij nor dij

depend on aij . If detA 6= 0, then, upon changing aij to any value a′ij if cij = 0

and to any value a′ij 6= −
dij
cij

if cij 6= 0, we obtain a matrix A′ with detA′ 6= 0.

This shows that n× n matrices of rank n are not sensitive.
For any 0 ≤ r < n, we will construct a sensitive n × n matrix A of rank r.

If r = 0, then A = 0 is a sensitive matrix of rank r. So assume r > 0. Let
b1, . . . ,br be linearly independent vectors in Cn such that the entries of each
bj add to zero. Such vectors exist since r ≤ n − 1; for example, we can take

b1 =
[

1 −1 0 0 . . . 0
]T

, b2 =
[

0 1 −1 0 . . . 0
]T

, etc. Let
A be the n× n matrix whose first r columns are b1, . . . ,br and the remaining
columns are equal to

∑r
j=1 bj . Then rankA = r. Note also that each column

of A is a linear combination of the other columns. If we change one entry in
one column in any way, then the entries of the new column will no longer add
to zero and, consequently, this column will not be a linear combination of the
other columns. It follows that the resulting matrix A′ has rank r+1. Therefore,
A is sensitive.

b) The above construction of a sensitive n× n matrix of rank r < n works over
any field K. Also, the above proof that all n × n matrices of rank n are not
sensitive is valid over any field K except the field of two elements. If K = {0, 1},
then the proof still goes through unless cij 6= 0 for all i, j (then we may not
be able to change aij in the desired way). But then cij = 1 for all i, j and,
therefore, A−1 = 1

detA [cji] has rank 1. This forces n = 1.

Answer: the possible ranks of sensitive n × n matrices over a field K are
0, 1, . . . , n− 1 except in the case |K| = 2 and n = 1 (then the possible ranks are
0 and 1).

2. Let A = [aij ] be an n× n real symmetric matrix whose entries satisfy
(i) aii = 1 and (ii)

∑n
j=1 |aij | ≤ 2 for all i. Prove that 0 ≤ detA ≤ 1.

Solution: Since A is real and symmetric, its eigenvalues are real. Let λ be one
of them and let x be a corresponding eigenvector. Then, for any i, we have∑

j 6=i

aijxj = (λ− aii)xi. (1)
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Choose i so that |xi| is maximal among all |xj |, j = 1, . . . , n. Then∣∣∣∣∣∣
∑
j 6=i

aijxj

∣∣∣∣∣∣ ≤ |xi|
∑
j 6=i

|aij |. (2)

Combining (1) and (2) and canceling |xi|, we obtain Gershgorin’s inequality:

|λ− aii| ≤
∑
j 6=i

|aij |.

Since aii = 1 and
∑
j 6=i |aij | ≤ 1, we have |λ− 1| ≤ 1, i.e., 0 ≤ λ ≤ 2.

Now let λ1, . . . , λn be the eigenvalues of A. We already know that λi ≥ 0
for all i, so we can apply the Arithmetic Mean/Geometric Mean Inequality:

(λ1 · · ·λn)
1
n ≤ 1

n
(λ1 + · · ·+ λn).

This can be rewritten as follows:

(detA)
1
n ≤ 1

n
trA.

Since trA = n, we get detA ≤ 1, as desired.

3. Let R = Z/mZ, the ring of residues modulo m (m > 1). If a ∈ Z is coprime
to m, then the map fa(x) = ax is a bijection R→ R, so fa can be regarded as
a permutation of m symbols. Let σ(m, a) be the sign of this permutation.

a) Show that if m = 2αk where k is odd and α ≥ 1, then σ(m, a) = σ(2α, a)
for all a coprime to m.

b) Determine σ(2α, a) as a function of α and a.

Solution:
Lemma 1. Let X be a finite set and let Zi, i = 1, . . . ,m, be a partition of X.
Let π be a permutation of X that leaves each subset Zi invariant. Let πi be the
restriction of π to Zi and let εi be the sign of πi. Then the sign of π is ε1 · · · εm.

Proof. The disjoint cycle decomposition of π is the combination of the disjoint
cycle decompositions of πi, i = 1, . . . ,m.

Lemma 2. Let X1 and X2 be finite sets and let X = X1 × X2. Let πi be a
permutation of Xi, i = 1, 2, and let π = π1 × π2, i.e., π is the permutation of
X defined by π((x1, x2)) = (π1(x1), π2(x2)) for all x1 ∈ X1 and x2 ∈ X2. Let

εi be the sign of πi, i = 1, 2. Then the sign of π is ε
|X2|
1 ε

|X1|
2 .
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Proof. Let π′ = π1 × idX2
and π′′ = idX1

× π2. Then π = π′ ◦ π′′. Now, X can
be partitioned into the sets Zy := X1 × {y}, where y ∈ X2. Clearly, π′ leaves
each Zy invariant; the restriction of π′ acts on each Zy in the same way as π1
acts on X1, namely, π′((x1, y)) = (π1(x1), y) for all x1 ∈ X1. By Lemma 1, the

sign of π′ is ε
|X2|
1 . Similarly, the sign of π′′ is ε

|X1|
2 . The result follows.

a) Let R1 be the ring of residues modulo 2α and let R2 be the ring of residues
modulo k. By Chinese Remainder Theorem, the map ι : R → R1 × R2 defined

by ι(x) = (x mod 2α, x mod k) is an isomorphism of rings. Let f
(1)
a (x1) = ax1

for all x1 ∈ R1 and f
(2)
a (x2) = ax2 for all x2 ∈ R2. According to our notation,

the sign of f
(1)
a is ε1 = σ(2α, a) and the sign of f

(2)
a is ε2 = σ(k, a). One

immediately verifies that ι ◦ fa ◦ ι−1 = f
(1)
a × f (2)a , so the sign of fa is the same

as the sign of f
(1)
a × f (2)a . By Lemma 2, the sign of the latter is ε

|R2|
1 ε

|R1|
2 . Since

|R2| = k is odd and |R1| = 2α is even (α ≥ 1), we obtain ε
|R2|
1 ε

|R1|
2 = ε1.

b) If α = 1, then fa = idR, so σ(2α, a) = 1. So assume α ≥ 2. We partition
R into Ri := {x ∈ R | x ≡ 2i` (mod 2α) for some odd `}, i = 0, 1, . . . α. Since
a is odd, the subsets Ri are invariant under fa. (Note that R0 is the group of

invertible residues modulo 2α.) Let f
(i)
a be the restriction of fa to Ri and let εi

be the sign of f
(i)
a .

First we determine ε0. Note that R0 can be partitioned into two subsets
according to the remainder mod 4, namely, R+

0 := {x ∈ R | x ≡ 1 (mod 4)}
and R−0 := {x ∈ R | x ≡ 3 (mod 4)} = −R+

0 . (R+
0 is a subgroup in R0 of index

2 and R−0 is the coset of −1.) Suppose a ≡ 1 (mod 4). Then R+
0 and R−0 are

invariant under fa. Since fa(−x) = −fa(x), we see that fa acts in essentially

the same way on R+
0 and on R−0 . By Lemma 1, the sign of f

(0)
a is +1. Now,

if a ≡ 3 (mod 4), then −a ≡ 1 (mod 4). Since fa = f−1 ◦ f−a, we see that the

sign of f
(0)
a is equal to the sign of f

(0)
−1 , which is easy to determine. Indeed, f−1

swaps the elements x and −x for x ≡ 1, . . . , 2α−1, and fixes 0 and 2α−1. Hence

f
(0)
−1 is a product of |R0|/2 = 2α−2 transpositions. Thus, the sign of f

(0)
−1 is +1

if α > 2 and −1 if α = 2. To summarize,

ε0 =

{
(−1)

a−1
2 if α = 2;

+1 if α > 2.

Now pick i < α − 1. Then the mapping ` 7→ 2i` gives a bijection between odd
residues modulo 2α−i and Ri. This bijection commutes with fa. Hence

εi =

{
(−1)

a−1
2 if α− i = 2;

+1 if α− i > 2.

Since fa fixes 0 and 2α−1, we have εα−1 = εα = +1. By Lemma 1, we conclude

that the sign of fa is ε0ε1 · · · εα = εα−2 = (−1)
a−1
2 .

Answer: for m = 2αk, with k odd, we have σ(m, a) =

{
(−1)

a−1
2 if α > 1;

+1 if α = 1.
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Remark. The above formula covers the case of even m. The result is radically
different when m is odd: σ(m, a) is then equal to

(
a
m

)
, the Jacobi symbol known

from Number Theory. Exercise: prove this fact.

4. Show that if a field K is not algebraically closed, then the solution set in Kn
of any system of equations

f1(x1, . . . , xn) = . . . = fm(x1, . . . , xn) = 0,

where f1, . . . , fm are polynomials in n variables over K, coincides with the solu-
tion set of one equation F (x1, . . . , xn) = 0, for some polynomial F in n variables
over K. [For example, if K = R, then we can take F = f21 + · · ·+ f2m.]

Solution: First we show by induction on m that there exists a polynomial
Hm(y1, . . . , ym) such that the only solution of the equation Hm = 0 is (0, . . . , 0).
Consider m = 2. Since K is not algebraically closed, there exists a polynomial
h(x) of degree d ≥ 2 that has no roots in K. Set H2(y1, y2) = yd2h(y1y2 ). Then the

only solution of the equation H2 = 0 is (0, 0), as desired. Assume that Hm−1
has been constructed. Set Hm(y1, . . . , ym) = H2(y1, Hm−1(y2, . . . , ym)).

Now, the system of equations f1 = 0, . . . , fm = 0 is equivalent to the single
equation F = 0 where F (x1, . . . , xn) = Hm(f1, . . . , fm).

5. We will say that a finite nonzero associative commutative ring (possibly
without identity element) is magical if the product of all its nonzero elements is
not equal to 0 or −1 (if the identity element exists). Find all magical rings.

Solution: Let R be a magical ring. Then R is not a field. Indeed, the product
of all nonzero elements in a finite field is −1, because each factor except 1 and
−1 cancels out with its inverse. Hence R contains a zero divisor x. Since the
product of all nonzero elements is not zero, the only element r 6= 0 with the
property xr = 0 is x itself. Consider the mapping f : R → R defined by
f(r) = xr. This is an endomorphism of the additive group of R. The kernel of
f is the set {0, x} and the image is contained in the kernel. If the image is {0},
then R = {0, x}, the multiplication of R is zero and the addition is defined by
x + x = 0. So assume that the image of f is {0, x}, i.e., it coincides with the
kernel. Then R consists of four elements, say, R = {0, x, a, b}. Since a, b are not
in the kernel of f , we have ax = x = bx. It follows that abx = x, so ab is not
in the kernel of f and hence ab = a or ab = b. These cases are symmetric, so
assume without loss of generality that ab = a.

The additive group of R is isomorphic to either Z4 or Z2 × Z2. In the first
case, there is a unique subgroup of order two, {0, x}. Hence a = −b. It follows
that the mapping Z4 → R defined by 0 7→ 0, 1 7→ b, 2 7→ x, 3 7→ a is an
isomorphism of rings. In the second case, b = a+ x and hence b2 = (a+ x)b =
a + x = b. Therefore, b is the identity element of R. Writing 1 for b, we
obtain R = {0, 1, x, x + 1}, with multiplication defined by x2 = 0. This ring is
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isomorphic to the ring of matrices

{[
λ µ
0 λ

]
| λ, µ ∈ Z2

}
and to the group ring

of the cyclic group of order 2 with coefficients in Z2.

Answer: Up to isomorphism, there are exactly three magical rings:

• the additive group Z2 with zero multiplication,

• Z4,

• the group ring Z2G where G is the cyclic group of order 2.

6. Let G be a group and let e be its identity element. We will say that an
element a ∈ G is engaged if a commutes with exactly three elements: e, a and
some element b (distinct from e and a). If this is the case, we will also say that
a is engaged to b.

a) Prove that the relation engaged to is symmetric: if a is engaged to b, then
b is engaged to a.

b) Prove that if G is a finite group, then one of the following three possibilities
takes place: (i) there are no engaged elements, (ii) exactly one third of the
elements are engaged, (iii) exactly two thirds of the elements are engaged.

c) Give examples of groups that realize each possibility in part (b).

Solution:
a) Suppose a is engaged to b. Then a commutes with ab, and hence ab is one
of the three elements: e, a or b. Since a 6= e and b 6= e, we have ab = e, i.e.,
b = a−1. The centralizer of a is the same as the centralizer of a−1, so b commutes
with exactly three elements: e, b and a, which means that b is engaged to a.
(Note also that the order of a is equal to 3. Indeed, it cannot be more than 3,
because a commutes with all powers of a, and it cannot be less than 3, because
a 6= e and a 6= b.)

b) Assume that G is a finite group and a is an engaged element of G. Since the
centralizer of a consists of three elements, the conjugacy class of a has order
1
3 |G|. One shows immediately that if a is engaged to b, then xax−1 is engaged
to xbx−1. Hence all elements in the conjugacy class of a are engaged. If there
is an engaged element a′ that is not conjugate to a, then the conjugacy class of
a′ is disjoint from the conjugacy class of a and has order 1

3 |G|. Finally, there
cannot be an engaged element outside the conjugacy classes of a and a′, because
otherwise all elements of G would be engaged, which is impossible (since e is
not engaged).

c) Any group whose order is not divisible by 3 cannot have any engaged elements
by part b), or because any engaged element has order 3. The symmetric group
S3 has exactly two engaged elements (the 3-cycles), i.e., 1

3 |S3|. The cyclic group
C3 has exactly two engaged elements, i.e., 2

3 |C3|.
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