- 1. We will say that a matrix is *sensitive* if its rank changes upon any change of any of its entries. What are the possible ranks of sensitive $n \times n$ matrices
 - (a) over the field of complex numbers?
 - (b) over an arbitrary field?
- 2. Let $A = [a_{ij}]$ be an $n \times n$ real symmetric matrix whose entries satisfy (i) $a_{ii} = 1$ and (ii) $\sum_{j=1}^{n} |a_{ij}| \le 2$ for all *i*. Prove that $0 \le \det A \le 1$.
- 3. Let $R = \mathbb{Z}/m\mathbb{Z}$, the ring of residues modulo m (m > 1). If $a \in \mathbb{Z}$ is coprime to m, then the map $f_a(x) = ax$ is a bijection $R \to R$, so f_a can be regarded as a permutation of m symbols. Let $\sigma(m, a)$ be the sign of this permutation.
 - (a) Show that if $m = 2^{\alpha}k$ where k is odd and $\alpha \ge 1$, then $\sigma(m, a) = \sigma(2^{\alpha}, a)$ for all a coprime to m.
 - (b) Determine $\sigma(2^{\alpha}, a)$ as a function of α and a.
- 4. Show that if a field \mathbb{K} is not algebraically closed, then the solution set in \mathbb{K}^n of any system of equations

$$f_1(x_1, \ldots, x_n) = \ldots = f_m(x_1, \ldots, x_n) = 0,$$

where f_1, \ldots, f_m are polynomials in n variables over \mathbb{K} , coincides with the solution set of one equation $F(x_1, \ldots, x_n) = 0$, for some polynomial F in n variables over \mathbb{K} . [For example, if $\mathbb{K} = \mathbb{R}$, then we can take $F = f_1^2 + \cdots + f_m^2$.]

- 5. We will say that a finite nonzero associative commutative ring (possibly without identity element) is *magical* if the product of all its nonzero elements is not equal to 0 or -1 (if the identity element exists). Find all magical rings.
- 6. Let G be a group and let e be its identity element. We will say that an element $a \in G$ is engaged if a commutes with exactly three elements: e, a and some element b (distinct from e and a). If this is the case, we will also say that a is engaged to b.
 - (a) Prove that the relation *engaged to* is symmetric: if a is engaged to b, then b is engaged to a.
 - (b) Prove that if G is a finite group, then one of the following three possibilities takes place: (i) there are no engaged elements, (ii) exactly one third of the elements are engaged, (iii) exactly two thirds of the elements are engaged.
 - (c) Give examples of groups that realize each possibility in part (b).