Solutions for the AAC Competition Problems 2008

1. Let P be a square matrix with complex entries. Prove that P has the
property P? = P if and only if rk P = tr P and k(] — P) = tr({ — P).

In fact we do not need the entries of P to be complex numbers: they can be
elements of an arbitrary field K of characteristic zero. Consider the linear
transformation K" — K" defined by x — Px, where n is the order of A. We
will denote this transformation by P. Let V = imP and W = im(Z — P).
They are subspaces of K", with dimV' = rk P and dim W = rk(I — P). For
any x € K", we have x = Px+ ([ — P)x, hence V4+W =K". Set Z =V NnW.

(=) Suppose P> = P. Then (I — P)> =1 —2P + P> =1 — P. Let
v € Z. Then we have v = Pz for some z, hence Pv = P?z = Px = v.
Similarly, v = (I — P)y for some y and (I — P)v = (I — P)*y = (I — P)y = v.
Thus v = Pv + (I — P)v = 2v, which yields v = 0. We have shown that
Z = {0}. Therefore, K* = V & W. The above calculations also show that
the restriction of P to V' is the identity map (hence the restriction of Z — P
is zero) and the restriction of Z — P to W is the identity map (and hence
the restriction of P is zero). Now select a basis {vy,...,v} in V and a
basis {wy, ..., w,—x} in W, where k = rk P. Then {vy,..., 05, w1,..., Wp_k}
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and Z — P has matrix [ — @) = 0 I }.HeneetrQ:k:erand
n—k

tr(l — Q) =n—k =rk( — Q). Since @ is similar to P and I — @ is similar
to I — P, the result follows.

(<) Suppose tk P = tr P and rk(/ — P) = tr(/ — P). Then we have
tk P +1k(l — P) = tr P+ tr(I — P) = tr/ = n. We also have dim V' +
dim W —dim Z = n. It follows that dim Z = 0, so Z = {0}. We have shown
that K* = V @ W. Then for any x € K", the vectors v € V and w € W
in the decomposition x = v + w are determined uniquely. In particular, if
x € V, then v = x, w = 0 is the only possibility. Therefore, if x € V', then
in the decomposition x = Px + (I — P)x we necessarily have (I — P)z = 0.
Now for any y € K", we have Py € V and hence (I — P)Py = 0. This shows
that (I — P)P =0, so P> = P.

is a basis for K”. Relative to this basis, P has matrix ) =

2. Student X. decided to compute the 100-th powers of all 17 x 17 matrices
over the field of 17 elements and see what their sum would be, but at that
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moment his computer broke. Help the student.

We will prove, more generally, that if n > 1 is an integer and R is a finite ring
such that there exists an element ( in the centre of R with both ( and 1 — ("
invertible, then the sum of the n-th powers of the elements of R is equal to
zero. Taking n = 100, R = Mati7(Z,7) and ¢ = 21, we then obtain that the
sum in question is zero. (To see that I — ¢'% is invertible, we observe that
by the Little Fermat Theorem 2! = 2% = —1 mod 17, so [ — (' = (.)

Let S =) .pr". Since ( is invertible, we see that when r ranges over
R, so does (r. Hence ) _p(¢r)" = S. On the other hand, since ( is central,
we have (¢r)" = ¢"r™ and hence Y _p(Cr)" = (">, cpr™ = ("S. We have
shown that ("S = S. Hence (1 —(")S = 0 and we conclude that S = 0,
since 1 — (™ is invertible.

3. Let K be a field.
(a) Prove that any subalgebra of K]z] is finitely generated.

(b) Is the same statement true for K|z, y|?

(a) Suppose A is a subalgebra of K[z] (with or without 1). Let S(A) be
the subset of Z>o = {0,1,2,...} that consists of the degrees of all nonzero
polynomials in A. Since deg(fg) = deg f + degg and A is closed under
multiplication, we see that S(A) is a subsemigroup of the additive semigroup
Zso. It S(A) is generated by some ny,...,n; and f; are nonzero polynomials
in A with deg f; = n;, © = 1,...,t, then the algebra A is generated by
fi,--., fr- Indeed, assume to the contrary that fi,..., f; generate a proper
subalgebra B C A and pick an element f € A\ B of minimal possible degree,
say, deg f = m. Then m € S(A) and hence m = &§ny + - -+ + &n, for some
integers & > 0. Let a € K be the highest coefficient of the polynomial f. Set
g=f—afi-- ft. Then degg < deg f and g € A\ B — a contradiction.
The result now follows from the next lemma.

Lemma. Any subsemigroup S of the additive semigroup Zs is finitely
generated.

Proof. If S = {0}, there is nothing to prove. Otherwise let d = ged S.
Then d > 0 and S is contained in the semigroup dZ>(, which is isomorphic
to Zso. Since S is sent to S’ = %ZS by the isomorphism and ged S" = 1,
we may assume without loss of generality that gcd S = 1. Then there exist



ni,...,ng € S such that gcd{ny,...,n;} = 1. Let T be the subsemigroup
of S generated by ny,...,n;. We claim that 7" (and hence S) contains all
sufficiently large integers. Indeed, there exist integers aq,...,a; such that
aing + -+ ang = 1. Let M =" |a;|n; where the summation » |~ is over
all ¢ such that a; < 0. Then for any integer n > M? we can write n = ¢M +r
where the integers ¢ and r satisfy ¢ > M and 0 < r < M. Then

n=gq>, |ajn;+r> amn; =>" |ai|(¢g —r)n; + Z+ a;rn;

where the summation ) is over all ¢ = 1,...,¢ and the summations Zi
are over all ¢ with a; > 0, resp. a; < 0. So n is a linear combination of
ni,...,n; with nonnegative integer coefficients and hence n € T, as desired.
Finally, let mq, ..., m, be all elements of S between 0 and M?2. Then the set
{n1,...,ng,mq,...,ms} generates S.

(b) Unlike Zsq, the semigroup Zsq X Z>( has subsemigroups that are not
finitely generated. For example, consider

S ={(m,n) € Z>o X Z>o | 0 <m < n}.

Assume S is generated by (mj,n;), i = 1,...,1. Let a = max{;*}. Then
for any linear combination (m,n) = . & (m;,n;) with nonnegative integer
coefficients &;, we will have n < am. But S contains elements (m,n) with
arbitrarily large ratio > — a contradiction.

Let S be any subsemigroup of Zso X Zx( that is not finitely generated.
Then the subalgebra

A = span{z™y" | (m,n) € S} C Kz, y]

is not finitely generated. Indeed, suppose A is generated by the polynomials
fi,--., fsand let ™iy™ ¢ =1,... ¢, be all monomials occuring in fi, ..., fs.
Then the elements (m;,n;), i =1,...,t, generate S — a contradiction.

4. Let R be a commuatative ring with 1. As usual, for a,b € R, a|b means
b = ax for some x € R. We will write a ~ b if b = au for some invertible
element u € R. Let S be the statement: “If a|b and b|a, then a ~ b”. It is
easy to see that § holds if R is an integral domain.

(a) Prove that S holds in the ring Z,, of integers modulo m, for any m > 2.

(b) Does S hold in Zj,[x]?



(a) First assume that m = p* where p is prime. Let a,b € Z,, be such that
a =rband b = sa for some r, s € Z,,. Then a = rsa and hence a(1—rs) = 0.
If a = 0, then b = 0 and hence a ~ b. So assume a # 0. Let a, 7, s be integers
representing the residues a,r, s, resp. Then we have a(1 — 75) = 0 mod p*.
Let j be the highest power of p dividing a@. Since @ #Z 0 mod p*, we have
0<j<k Letd = 1%' Then we have a/(1 — 7#3) = 0 mod p*~7. It follows
that p divides 1 — 7S and hence p does not divide 7s. Therefore,  and s are
invertible in Z,,. This proves a ~ b.

For general m, we can write m = pk1 . kt and apply Chinese Remainder
Theorem. Namely, if a = rb and b = sa in Zm, then, using the symbol “nr
again for integers representing residues, we get @ = 7b mod pl and b = sa
mod pz’, for any ¢ = 1,...,t. Then by the above we obtain b = au; mod pl
for some mteger U; that is not divisible by p;. Let u be an integer such that
u = u; mod p¥ for all i. Then b = au mod p¥ for all i and hence b = au
mod m. Since the residue of u is invertible in Z,,, we conclude that a ~ b.

(b) We will give a similar argument for R = Z,[z]. Let R = Z[z]. First
assume that m = p* where p is prime. We have to prove that, for any
a,b € R, if a = rb mod m and b = sa mod m for some r,s € R, then there
exists u € R such that b = au mod m and the residue of u is invertible in
R. If a = 0 mod m, then we are done. So assume a % 0 mod m and let j
be the highest power of p dividing a, 0 < j < k. Then we can write a = a'p’
for some a' € R that is not divisible by p. Since R is an integral domain,
the congruence a(1 — rs) = 0 mod p* implies the congruence a/(1 —rs) =0
mod p*~7 and hence mod p. Since o’ # 0 mod p and R/(p) = Z,[z] is an
integral domain, we conclude that 1 —rs = 0 mod p, i.e., rs = 1 — & where
¢ is divisible by p. But then ¢* = 0 mod m and hence rs is invertible mod
m (the inverse being 1 + & + &2 + -+ + &*1). It follows that r and s are
invertible mod m and thus We can take u = s.

For general m = plf .- pl*, Chinese Remainder Theorem applied to the
ring R yields R = Ry x -+ X Ry where R; = Z 1, [z]. We already proved

property S for R;, i =1,...,t. It follows that R also has property S.

5. Let G be a group. Suppose m and n are relatively prime integers such that
x™y" = y"x" and x™y™ = y"a™ for all x,y € G. Prove that G is abelian.

Let M be the subgroup of GG generated by all elements 2™, x € G, and let N
be the subgroup of G generated by all elements 2™, x € G. From the given



conditions it follows that M and N are abelian. Since ged(m,n) = 1, there
exist integers «, 3 such that am + fn = 1. Then for any g € G, we have
g = gt = (g*)m(¢g”)", which shows that M N = G. Hence it suffices to
prove that for any a € M and b € N we have ab = ba. Let ¢ = aba='b71.
Since for any g € G, gr™g~! = (gvg~')™, the subgroup M is normal in G.
It follows that ¢ = a(ba™'b~') € M. Similarly, N is normal in G and hence
¢ = (aba™")b=' € N. Thus ¢ € M N N. Tt follows that ¢ commutes with
any element of M and with any element of N. Hence c is central in G. Now
ab = cba implies

ab™ = (ab)b™ " = (cba)b™ ! = (cb)ab™ " = (cb)*ab™* = ... = (cb)™a.

Since c is central, we have (¢b)™ = ¢™b™. Since both a and b™ are in M, they
commute, so we obtain b™a = ab™ = ¢™b™a and hence ¢™ = 1. Similarly,
" = 1. Since ged(m,n) = 1, we conclude that ¢ = 1, as desired.

6. A group G acts on a set such that any non-identity element has a unique
fixed point.

(a) Suppose G is finite. Show that the fixed point is the same for all non-
identity elements of the group.

(b) Is the same statment true for infinite groups?

(a) Let X be the set of all fixed points for g € G, g # 1. Note that G acts
on X, since if gz = x and hz = vy, then y is a fixed point of the element
g" = hgh™'. Hence without loss of generality we may assume that X = X.

Denote G' = G'\ {1}. We have a surjection ¢ : G’ — X which takes an
element g # 1 to its unique fixed point. Hence |G| —1 = |G| > |X].

For any = € X, denote its orbit O, = {gz | ¢ € G}. Then |G| = |0,||G,|
where (G, is the stabilizer of x. Let N be the number of orbits of the action
G : X. For an orbit O = O,, let No = |G| (clearly, this number does
not depend on the choice of z € O). Then N|G| = >, |O|No where the
summation is over all orbits. On the other hand,

Y 10INo = #{(g.2) € G x X | g =z} = |X| + |G| - 1,
@

because there are | X| pairs of the form (1,z) and |G| — 1 pairs of the form

(9,¢(9)), g € G". Thus N|G| = |X[+ |G| =1, ie, [G|(N - 1) = |X] - 1.
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But the right-hand side is at most |G| — 2. Therefore N = 1 and |X| = 1.
The latter means that the fixed point is common to all g € G.

(b) If G is infinite, the statement may fail to be true. For example, the group
of rotations G = SO(3) naturally acts on the 2-dimensional sphere S? C R3.
Let X be the set of the diameters of the sphere (so X can be identified with
the projective plane RP?). Then each rotation has a unique fixed point (its
axis), which is not common to all rotations.



