
Solutions for the AAC Competition Problems 2008

1. Let P be a square matrix with complex entries. Prove that P has the
property P 2 = P if and only if rk P = tr P and rk(I − P ) = tr(I − P ).

In fact we do not need the entries of P to be complex numbers: they can be
elements of an arbitrary field K of characteristic zero. Consider the linear
transformation Kn → Kn defined by x 7→ Px, where n is the order of A. We
will denote this transformation by P . Let V = imP and W = im(I − P).
They are subspaces of Kn, with dim V = rk P and dim W = rk(I − P ). For
any x ∈ Kn, we have x = Px+(I−P )x, hence V +W = Kn. Set Z = V ∩W .

(⇒) Suppose P 2 = P . Then (I − P )2 = I − 2P + P 2 = I − P . Let
v ∈ Z. Then we have v = Px for some x, hence Pv = P 2x = Px = v.
Similarly, v = (I−P )y for some y and (I−P )v = (I−P )2y = (I−P )y = v.
Thus v = Pv + (I − P )v = 2v, which yields v = 0. We have shown that
Z = {0}. Therefore, Kn = V ⊕W . The above calculations also show that
the restriction of P to V is the identity map (hence the restriction of I − P
is zero) and the restriction of I − P to W is the identity map (and hence
the restriction of P is zero). Now select a basis {v1, . . . , vk} in V and a
basis {w1, . . . , wn−k} in W , where k = rk P . Then {v1, . . . , vk, w1, . . . , wn−k}

is a basis for Kn. Relative to this basis, P has matrix Q =

[
Ik 0
0 0n−k

]
and I − P has matrix I − Q =

[
0k 0
0 In−k

]
. Hence tr Q = k = rk Q and

tr(I −Q) = n− k = rk(I −Q). Since Q is similar to P and I −Q is similar
to I − P , the result follows.

(⇐) Suppose rk P = tr P and rk(I − P ) = tr(I − P ). Then we have
rk P + rk(I − P ) = tr P + tr(I − P ) = tr I = n. We also have dim V +
dim W − dim Z = n. It follows that dim Z = 0, so Z = {0}. We have shown
that Kn = V ⊕ W . Then for any x ∈ Kn, the vectors v ∈ V and w ∈ W
in the decomposition x = v + w are determined uniquely. In particular, if
x ∈ V , then v = x, w = 0 is the only possibility. Therefore, if x ∈ V , then
in the decomposition x = Px + (I − P )x we necessarily have (I − P )x = 0.
Now for any y ∈ Kn, we have Py ∈ V and hence (I −P )Py = 0. This shows
that (I − P )P = 0, so P 2 = P .

2. Student X. decided to compute the 100-th powers of all 17× 17 matrices
over the field of 17 elements and see what their sum would be, but at that

1



moment his computer broke. Help the student.

We will prove, more generally, that if n ≥ 1 is an integer and R is a finite ring
such that there exists an element ζ in the centre of R with both ζ and 1− ζn

invertible, then the sum of the n-th powers of the elements of R is equal to
zero. Taking n = 100, R = Mat17(Z17) and ζ = 2I, we then obtain that the
sum in question is zero. (To see that I − ζ100 is invertible, we observe that
by the Little Fermat Theorem 2100 ≡ 24 ≡ −1 mod 17, so I − ζ100 = ζ.)

Let S =
∑

r∈R rn. Since ζ is invertible, we see that when r ranges over
R, so does ζr. Hence

∑
r∈R(ζr)n = S. On the other hand, since ζ is central,

we have (ζr)n = ζnrn and hence
∑

r∈R(ζr)n = ζn
∑

r∈R rn = ζnS. We have
shown that ζnS = S. Hence (1 − ζn)S = 0 and we conclude that S = 0,
since 1− ζn is invertible.

3. Let K be a field.

(a) Prove that any subalgebra of K[x] is finitely generated.

(b) Is the same statement true for K[x, y]?

(a) Suppose A is a subalgebra of K[x] (with or without 1). Let S(A) be
the subset of Z≥0 = {0, 1, 2, . . .} that consists of the degrees of all nonzero
polynomials in A. Since deg(fg) = deg f + deg g and A is closed under
multiplication, we see that S(A) is a subsemigroup of the additive semigroup
Z≥0. If S(A) is generated by some n1, . . . , nt and fi are nonzero polynomials
in A with deg fi = ni, i = 1, . . . , t, then the algebra A is generated by
f1, . . . , ft. Indeed, assume to the contrary that f1, . . . , ft generate a proper
subalgebra B ⊂ A and pick an element f ∈ A\B of minimal possible degree,
say, deg f = m. Then m ∈ S(A) and hence m = ξ1n1 + · · · + ξtnt for some
integers ξi ≥ 0. Let a ∈ K be the highest coefficient of the polynomial f . Set
g = f − af ξ1

1 · · · f ξt
t . Then deg g < deg f and g ∈ A \ B — a contradiction.

The result now follows from the next lemma.
Lemma. Any subsemigroup S of the additive semigroup Z≥0 is finitely

generated.
Proof. If S = {0}, there is nothing to prove. Otherwise let d = gcd S.

Then d > 0 and S is contained in the semigroup dZ≥0, which is isomorphic
to Z≥0. Since S is sent to S ′ = 1

d
S by the isomorphism and gcd S ′ = 1,

we may assume without loss of generality that gcd S = 1. Then there exist
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n1, . . . , nt ∈ S such that gcd{n1, . . . , nt} = 1. Let T be the subsemigroup
of S generated by n1, . . . , nt. We claim that T (and hence S) contains all
sufficiently large integers. Indeed, there exist integers a1, . . . , at such that
a1n1 + · · ·+ atnt = 1. Let M =

∑− |ai|ni where the summation
∑− is over

all i such that ai < 0. Then for any integer n ≥ M2 we can write n = qM +r
where the integers q and r satisfy q ≥ M and 0 ≤ r < M . Then

n = q
∑− |ai|ni + r

∑
aini =

∑− |ai|(q − r)ni +
∑+ airni

where the summation
∑

is over all i = 1, . . . , t and the summations
∑±

are over all i with ai > 0, resp. ai < 0. So n is a linear combination of
n1, . . . , nt with nonnegative integer coefficients and hence n ∈ T , as desired.
Finally, let m1, . . . ,ms be all elements of S between 0 and M2. Then the set
{n1, . . . , nt, m1, . . . ,ms} generates S.

(b) Unlike Z≥0, the semigroup Z≥0 × Z≥0 has subsemigroups that are not
finitely generated. For example, consider

S = {(m, n) ∈ Z≥0 × Z≥0 | 0 < m ≤ n}.

Assume S is generated by (mi, ni), i = 1, . . . , t. Let α = max{ ni

mi
}. Then

for any linear combination (m, n) =
∑

i ξi(mi, ni) with nonnegative integer
coefficients ξi, we will have n ≤ αm. But S contains elements (m, n) with
arbitrarily large ratio n

m
— a contradiction.

Let S be any subsemigroup of Z≥0 × Z≥0 that is not finitely generated.
Then the subalgebra

A = span{xmyn | (m, n) ∈ S} ⊂ K[x, y]

is not finitely generated. Indeed, suppose A is generated by the polynomials
f1, . . . , fs and let xmiyni , i = 1, . . . , t, be all monomials occuring in f1, . . . , fs.
Then the elements (mi, ni), i = 1, . . . , t, generate S — a contradiction.

4. Let R be a commuatative ring with 1. As usual, for a, b ∈ R, a|b means
b = ax for some x ∈ R. We will write a ∼ b if b = au for some invertible
element u ∈ R. Let S be the statement: “If a|b and b|a, then a ∼ b”. It is
easy to see that S holds if R is an integral domain.

(a) Prove that S holds in the ring Zm of integers modulo m, for any m ≥ 2.

(b) Does S hold in Zm[x]?

3



(a) First assume that m = pk where p is prime. Let a, b ∈ Zm be such that
a = rb and b = sa for some r, s ∈ Zm. Then a = rsa and hence a(1−rs) = 0.
If a = 0, then b = 0 and hence a ∼ b. So assume a 6= 0. Let ã, r̃, s̃ be integers
representing the residues a, r, s, resp. Then we have ã(1 − r̃s̃) ≡ 0 mod pk.
Let j be the highest power of p dividing ã. Since ã 6≡ 0 mod pk, we have
0 ≤ j < k. Let a′ = ã

pj . Then we have a′(1 − r̃s̃) ≡ 0 mod pk−j. It follows
that p divides 1− r̃s̃ and hence p does not divide r̃s̃. Therefore, r and s are
invertible in Zm. This proves a ∼ b.

For general m, we can write m = pk1
1 · · · pkt

t and apply Chinese Remainder
Theorem. Namely, if a = rb and b = sa in Zm, then, using the symbol “ ˜ ”
again for integers representing residues, we get ã ≡ r̃b̃ mod pki

i and b̃ ≡ s̃ã
mod pki

i , for any i = 1, . . . , t. Then by the above we obtain b̃ ≡ ãui mod pki
i

for some integer ui that is not divisible by pi. Let u be an integer such that
u ≡ ui mod pki

i for all i. Then b̃ ≡ ãu mod pki
i for all i and hence b̃ ≡ ãu

mod m. Since the residue of u is invertible in Zm, we conclude that a ∼ b.

(b) We will give a similar argument for R = Zm[x]. Let R̃ = Z[x]. First
assume that m = pk where p is prime. We have to prove that, for any
a, b ∈ R̃, if a ≡ rb mod m and b ≡ sa mod m for some r, s ∈ R̃, then there
exists u ∈ R̃ such that b ≡ au mod m and the residue of u is invertible in
R. If a ≡ 0 mod m, then we are done. So assume a 6≡ 0 mod m and let j
be the highest power of p dividing a, 0 ≤ j < k. Then we can write a = a′pj

for some a′ ∈ R̃ that is not divisible by p. Since R̃ is an integral domain,
the congruence a(1− rs) ≡ 0 mod pk implies the congruence a′(1− rs) ≡ 0
mod pk−j and hence mod p. Since a′ 6≡ 0 mod p and R̃/(p) ∼= Zp[x] is an
integral domain, we conclude that 1 − rs ≡ 0 mod p, i.e., rs = 1 − ξ where
ξ is divisible by p. But then ξk ≡ 0 mod m and hence rs is invertible mod
m (the inverse being 1 + ξ + ξ2 + · · · + ξk−1). It follows that r and s are
invertible mod m and thus we can take u = s.

For general m = pk1
1 · · · pkt

t , Chinese Remainder Theorem applied to the
ring R̃ yields R ∼= R1 × · · · × Rt where Ri = Z

p
ki
i

[x]. We already proved

property S for Ri, i = 1, . . . , t. It follows that R also has property S.

5. Let G be a group. Suppose m and n are relatively prime integers such that
xnyn = ynxn and xmym = ymxm for all x, y ∈ G. Prove that G is abelian.

Let M be the subgroup of G generated by all elements xm, x ∈ G, and let N
be the subgroup of G generated by all elements xm, x ∈ G. From the given
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conditions it follows that M and N are abelian. Since gcd(m,n) = 1, there
exist integers α, β such that αm + βn = 1. Then for any g ∈ G, we have
g = gαm+βn = (gα)m(gβ)n, which shows that MN = G. Hence it suffices to
prove that for any a ∈ M and b ∈ N we have ab = ba. Let c = aba−1b−1.
Since for any g ∈ G, gxmg−1 = (gxg−1)m, the subgroup M is normal in G.
It follows that c = a(ba−1b−1) ∈ M . Similarly, N is normal in G and hence
c = (aba−1)b−1 ∈ N . Thus c ∈ M ∩ N . It follows that c commutes with
any element of M and with any element of N . Hence c is central in G. Now
ab = cba implies

abm = (ab)bm−1 = (cba)bm−1 = (cb)abm−1 = (cb)2abm−2 = . . . = (cb)ma.

Since c is central, we have (cb)m = cmbm. Since both a and bm are in M , they
commute, so we obtain bma = abm = cmbma and hence cm = 1. Similarly,
cn = 1. Since gcd(m, n) = 1, we conclude that c = 1, as desired.

6. A group G acts on a set such that any non-identity element has a unique
fixed point.

(a) Suppose G is finite. Show that the fixed point is the same for all non-
identity elements of the group.

(b) Is the same statment true for infinite groups?

(a) Let X̃ be the set of all fixed points for g ∈ G, g 6= 1. Note that G acts
on X̃, since if gx = x and hx = y, then y is a fixed point of the element
gh = hgh−1. Hence without loss of generality we may assume that X̃ = X.

Denote G′ = G \ {1}. We have a surjection ϕ : G′ → X which takes an
element g 6= 1 to its unique fixed point. Hence |G| − 1 = |G′| ≥ |X|.

For any x ∈ X, denote its orbit Ox = {gx | g ∈ G}. Then |G| = |Ox||Gx|
where Gx is the stabilizer of x. Let N be the number of orbits of the action
G : X. For an orbit O = Ox, let NO = |Gx| (clearly, this number does
not depend on the choice of x ∈ O). Then N |G| =

∑
O |O|NO where the

summation is over all orbits. On the other hand,∑
O

|O|NO = #{(g, x) ∈ G×X | gx = x} = |X|+ |G| − 1,

because there are |X| pairs of the form (1, x) and |G| − 1 pairs of the form
(g, ϕ(g)), g ∈ G′. Thus N |G| = |X| + |G| − 1, i.e., |G|(N − 1) = |X| − 1.

5



But the right-hand side is at most |G| − 2. Therefore N = 1 and |X| = 1.
The latter means that the fixed point is common to all g ∈ G′.

(b) If G is infinite, the statement may fail to be true. For example, the group
of rotations G = SO(3) naturally acts on the 2-dimensional sphere S2 ⊂ R3.
Let X be the set of the diameters of the sphere (so X can be identified with
the projective plane RP 2). Then each rotation has a unique fixed point (its
axis), which is not common to all rotations.
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