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The Ko-Lee et al. protocol

1. Alice and Bob agree on a group G and an element w in G . Thus, G and w
are public.

2. Alice picks a private a ∈ G and sends w a = a−1wa to Bob.

3. Bob picks a private b ∈ G and sends wb = b−1wb to Alice.

4. Alice computes KA = (wb)a = wba, and Bob computes KB = (w a)b = w ab.

If ab = ba, then Alice and Bob get a common private key KB = w ab = wba = KA.
Typically, there are two public subgroups A and B of the group G , given by their
(finite) generating sets, such that ab = ba for any a ∈ A, b ∈ B.

Example (Ko-Lee). Braid group.
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The platform group G

(P0) The group G has to be well known. More specifically, the conjugacy search
problem (i.e., recovering a from (w , a−1wa)) in the group G either has to
be well studied or can be reduced to a well-known problem.

(P1) The word problem in G should have a fast (e.g. quadratic-time) solution by
a deterministic algorithm. Better yet, there should be an efficiently
computable “normal form” for elements of G .

(P2) The conjugacy search problem should not have an efficient solution by a
deterministic algorithm.

(P3) There should be a way to disguise elements of G so that it would be
impossible to recover x from x−1wx just by inspection. Example: “normal
form”.

(P4) G should be “large”, i.e. have a “fast growth”. This is necessary to have a
sufficiently large key space.
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Ramifications of the Ko-Lee protocol

1. Alice and Bob agree on a group G , two subsets A, B ⊆ G commuting
elementwise, and an element w in G .

2. Alice randomly selects private elements a1, a2 ∈ A. Then she sends the
element a1wa2 to Bob.

3. Bob randomly selects private elements b1, b2 ∈ B. Then he sends the
element b1wb2 to Alice.

4. Alice computes KA = a1b1wb2a2, and Bob computes KB = b1a1wa2b2.
Since aibi = biai in G , one has KA = KB = K .
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Using matrices

Stickel 2005, Maze-Monico-Rosenthal 2007

There is a public ring (or a semiring) R and public n × n matrices S , M1, and M2

over R. The ring R should have a non-trivial commutative subring C . One way to
guarantee that would be for R to be an algebra over a field K ; then, of course,
C = K will be a commutative subring of R.

1. Alice chooses polynomials p
A
(x), q

A
(x) ∈ C [x ] and sends the matrix

U = p
A
(M1) · S · qA

(M2) to Bob.

2. Bob chooses polynomials p
B
(x), q

B
(x) ∈ C [x ] and sends the matrix

V = p
B
(M1) · S · qB

(M2) to Alice.

3. Alice computes
KA = p

A
(M1) · V · q

A
(M2) = p

A
(M1) · pB

(M1) · S · qB
(M2) · qA

(M2).

4. Bob computes
KB = p

B
(M1) · U · q

B
(M2) = p

B
(M1) · pA

(M1) · S · qA
(M2) · qB

(M2).

Since any two polynomials in the same matrix commute, one has K = KA = KB ,
the shared secret key.
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The Anshel-Anshel-Goldfeld protocol

Can use ANY non-abelian group with efficiently solvable word problem as the
platform.

A group G and elements a1, ..., ak , b1, ..., bm ∈ G are public.

1. Alice picks a private x ∈ G as a word in a1, ..., ak (i.e., x = x(a1, ..., ak)) and
sends bx

1 , ..., bx
m to Bob.

2. Bob picks a private y ∈ G as a word in b1, ..., bm and sends ay
1 , ..., ay

k to
Alice.

3. Alice computes x(ay
1 , ..., ay

k) = xy = y−1xy , and then computes
KA = x−1 · (y−1xy) = x−1y−1xy .

4. Bob computes y(bx
1 , ..., bx

m) = y x = x−1yx , and then computes
KB = (y−1 · x−1yx)−1 = x−1y−1xy .

Thus, K = KA = KB is the shared secret key.
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Platform groups

• Braid groups

• Thompson’s group

• Small cancellation groups

• Groups of matrices over various rings

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 29, 2012 7 / 10



Semidirect product

Let G , H be two groups, let Aut(G ) be the group of automorphisms of G , and let
ρ : H → Aut(G ) be a homomorphism. Then the semidirect product of G and H
is the set

Γ = G oρ H = {(g , h) : g ∈ G , h ∈ H}
with the group operation given by

(g , h)(g ′, h′) = (gρ(h) · g ′, h · h′).
Here gρ(h) denotes the image of g under the automorphism ρ(h).
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Holomorph

If H = Aut(G ), then the corresponding semidirect product is called the holomorph
of the group G . Thus, the holomorph of G , usually denoted by Hol(G ), is the set
of all pairs (g , φ), where g ∈ G , φ ∈ Aut(G ), with the group operation given by

(g , φ) · (g ′, φ′) = (φ′(g) · g ′, φ · φ′).

It is often more practical to use a subgroup of Aut(G ) in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can
consider the semigroup End(G ) instead of the group Aut(G ) in this construction.
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Thank you
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