Vladimir Shpilrain
 The City College of New York shpil@groups.sci.ccny.cuny.edu

February 29, 2012

The Ko-Lee et al. protocol

1. Alice and Bob agree on a group G and an element w in G. Thus, G and w are public.
2. Alice picks a private $a \in G$ and sends $w^{a}=a^{-1}$ wa to Bob.
3. Bob picks a private $b \in G$ and sends $w^{b}=b^{-1} w b$ to Alice.
4. Alice computes $K_{A}=\left(w^{b}\right)^{a}=w^{b a}$, and Bob computes $K_{B}=\left(w^{a}\right)^{b}=w^{a b}$.

If $a b=b a$, then Alice and Bob get a common private key $K_{B}=w^{a b}=w^{b a}=K_{A}$. Typically, there are two public subgroups A and B of the group G, given by their (finite) generating sets, such that $a b=b a$ for any $a \in A, b \in B$.

Example (Ko-Lee). Braid group

The Ko-Lee et al. protocol

1. Alice and Bob agree on a group G and an element w in G. Thus, G and w are public.
2. Alice picks a private $a \in G$ and sends $w^{a}=a^{-1}$ wa to Bob.
3. Bob picks a private $b \in G$ and sends $w^{b}=b^{-1} w b$ to Alice.
4. Alice computes $K_{A}=\left(w^{b}\right)^{a}=w^{b a}$, and Bob computes $K_{B}=\left(w^{a}\right)^{b}=w^{a b}$.

If $a b=b a$, then Alice and Bob get a common private key $K_{B}=w^{a b}=w^{b a}=K_{A}$. Typically, there are two public subgroups A and B of the group G, given by their (finite) generating sets, such that $a b=b a$ for any $a \in A, b \in B$.

Example (Ko-Lee). Braid group.

The platform group G

(P0) The group G has to be well known. More specifically, the conjugacy search problem (i.e., recovering a from ($\left.w, a^{-1} w a\right)$) in the group G either has to be well studied or can be reduced to a well-known problem.
(P1) The word problem in G should have a fast (e.g. quadratic-time) solution by a deterministic algorithm. Better yet, there should be an efficiently computable "normal form" for elements of G
(P2) The conjugacy search problem should not have an efficient solution by a deterministic algorithm
(P3) There should be a way to disguise elements of G so that it would be impossible to recover x from $x^{-1} w x$ just by inspection. Example: "normal form'
(P4) G should be "large", i.e. have a "fast growth". This is necessary to have a sufficiently large key space.

The platform group G

(P0) The group G has to be well known. More specifically, the conjugacy search problem (i.e., recovering a from ($\left.w, a^{-1} w a\right)$) in the group G either has to be well studied or can be reduced to a well-known problem.
(P1) The word problem in G should have a fast (e.g. quadratic-time) solution by a deterministic algorithm. Better yet, there should be an efficiently computable "normal form" for elements of G.

The platform group G

(P0) The group G has to be well known. More specifically, the conjugacy search problem (i.e., recovering a from ($\left.w, a^{-1} w a\right)$) in the group G either has to be well studied or can be reduced to a well-known problem.
(P1) The word problem in G should have a fast (e.g. quadratic-time) solution by a deterministic algorithm. Better yet, there should be an efficiently computable "normal form" for elements of G.
(P2) The conjugacy search problem should not have an efficient solution by a deterministic algorithm.
(P3) There should be a way to disguise elements of G so that it would be
impossible to recover x from $x^{-1} w x$ just by inspection. Example: "normal
form".
(P4) G should be "large", i.e. have a "fast growth". This is necessary to have a
sufficiently large key space.

The platform group G

(P0) The group G has to be well known. More specifically, the conjugacy search problem (i.e., recovering a from ($\left.w, a^{-1} w a\right)$) in the group G either has to be well studied or can be reduced to a well-known problem.
(P1) The word problem in G should have a fast (e.g. quadratic-time) solution by a deterministic algorithm. Better yet, there should be an efficiently computable "normal form" for elements of G.
(P2) The conjugacy search problem should not have an efficient solution by a deterministic algorithm.
(P3) There should be a way to disguise elements of G so that it would be impossible to recover x from $x^{-1} w x$ just by inspection. Example: "normal form".
(P4) G should be "large", i.e. have a "fast growth". This is necessary to have a sufficiently large key space.

The platform group G

(P0) The group G has to be well known. More specifically, the conjugacy search problem (i.e., recovering a from ($\left.w, a^{-1} w a\right)$) in the group G either has to be well studied or can be reduced to a well-known problem.
(P1) The word problem in G should have a fast (e.g. quadratic-time) solution by a deterministic algorithm. Better yet, there should be an efficiently computable "normal form" for elements of G.
(P2) The conjugacy search problem should not have an efficient solution by a deterministic algorithm.
(P3) There should be a way to disguise elements of G so that it would be impossible to recover x from $x^{-1} w x$ just by inspection. Example: "normal form"
(P4) G should be "large", i.e. have a "fast growth". This is necessary to have a sufficiently large key space.

Ramifications of the Ko-Lee protocol

1. Alice and Bob agree on a group G, two subsets $A, B \subseteq G$ commuting elementwise, and an element w in G.
2. Alice randomly selects private elements $a_{1}, a_{2} \in A$. Then she sends the element $a_{1} w a_{2}$ to Bob.
3. Bob randomly selects private elements $b_{1}, b_{2} \in B$. Then he sends the element $b_{1} w b_{2}$ to Alice.
4. Alice computes $K_{A}=a_{1} b_{1} w b_{2} a_{2}$, and Bob computes $K_{B}=b_{1} a_{1} w a_{2} b_{2}$. Since $a_{i} b_{i}=b_{i} a_{i}$ in G, one has $K_{A}=K_{B}=K$.

Using matrices

Stickel 2005, Maze-Monico-Rosenthal 2007
There is a public ring (or a semiring) R and public $n \times n$ matrices S, M_{1}, and M_{2} over R. The ring R should have a non-trivial commutative subring C. One way to guarantee that would be for R to be an algebra over a field K; then, of course, $C=K$ will be a commutative subring of R.

1. Alice chooses polynomials $p_{A}(x), q_{A}(x) \in C[x]$ and sends the matrix $U=p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right)$ to Bob.
2. Bob chooses polynomials $p_{B}(x), q_{B}(x) \in C[x]$ and sends the matrix $V=p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right)$ to Alice.
3. Alice computes
$K_{A}=p_{A}\left(M_{1}\right) \cdot V \cdot q_{A}\left(M_{2}\right)=p_{A}\left(M_{1}\right) \cdot p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right) \cdot q_{A}\left(M_{2}\right)$
4. Bob computes
$K_{B}=p_{B}\left(M_{1}\right) \cdot U \cdot q_{B}\left(M_{2}\right)=p_{B}\left(M_{1}\right) \cdot p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right) \cdot q_{B}\left(M_{2}\right)$
Since any two polynomials in the same matrix commute, one has $K=K_{A}=K_{B}$ the shared secret key.

Using matrices

Stickel 2005, Maze-Monico-Rosenthal 2007

There is a public ring (or a semiring) R and public $n \times n$ matrices S, M_{1}, and M_{2} over R. The ring R should have a non-trivial commutative subring C. One way to guarantee that would be for R to be an algebra over a field K; then, of course, $C=K$ will be a commutative subring of R.

1. Alice chooses polynomials $p_{A}(x), q_{A}(x) \in C[x]$ and sends the matrix $U=p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right)$ to Bob.
2. Bob chooses polynomials $p_{B}(x), q_{B}(x) \in C[x]$ and sends the matrix $V=p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right)$ to Alice.
3. Alice computes

$$
K_{A}=p_{A}\left(M_{1}\right) \cdot V \cdot q_{A}\left(M_{2}\right)=p_{A}\left(M_{1}\right) \cdot p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right) \cdot q_{A}\left(M_{2}\right) .
$$

4. Bob computes

$$
K_{B}=p_{B}\left(M_{1}\right) \cdot U \cdot q_{B}\left(M_{2}\right)=p_{B}\left(M_{1}\right) \cdot p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right) \cdot q_{B}\left(M_{2}\right) .
$$

Since any two polynomials in the same matrix commute, one has $K=K_{A}=K_{B}$, the shared secret key.

The Anshel-Anshel-Goldfeld protocol

Can use ANY non-abelian group with efficiently solvable word problem as the platform.

A group G and elements $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m} \in G$ are public.

1. Alice picks a private $x \in G$ as a word in a_{1}, \ldots, a_{k} (i.e., $x=x\left(a_{1}, \ldots, a_{k}\right)$) and sends $b_{1}^{\times}, \ldots, b_{m}^{\times}$to Bob.
2. Bob picks a private $y \in G$ as a word in b_{1}, \ldots, b_{m} and sends $a_{1}^{y}, \ldots, a_{k}^{y}$ to Alice.
3. Alice computes $x\left(a_{1}^{y}, \ldots, a_{k}^{y}\right)=x^{y}=y^{-1} x y$, and then computes $K_{A}=x^{-1} \cdot\left(y^{-1} x y\right)=x^{-1} y^{-1} x y$.
4. Bob computes $y\left(b_{1}^{\times}, \ldots, b_{m}^{x}\right)=y^{x}=x^{-1} y x$, and then computes $K_{B}=\left(y^{-1} \cdot x^{-1} y x\right)^{-1}=x^{-1} y^{-1} x y$.
Thus, $K=K_{A}=K_{B}$ is the shared secret key.

Platform groups

- Braid groups
- Thompson's group
- Small cancellation groups
- Groups of matrices over various rings

Semidirect product

Let G, H be two groups, let $\operatorname{Aut}(G)$ be the group of automorphisms of G, and let $\rho: H \rightarrow \operatorname{Aut}(G)$ be a homomorphism. Then the semidirect product of G and H is the set

$$
\Gamma=G \rtimes_{\rho} H=\{(g, h): g \in G, h \in H\}
$$

with the group operation given by

$$
(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g^{\rho(h)} \cdot g^{\prime}, h \cdot h^{\prime}\right)
$$

Here $g^{\rho(h)}$ denotes the image of g under the automorphism $\rho(h)$.

Holomorph

If $H=\operatorname{Aut}(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $\operatorname{Hol}(G)$, is the set of all pairs (g, ϕ), where $g \in G, \phi \in \operatorname{Aut}(G)$, with the group operation given by

$$
(g, \phi) \cdot\left(g^{\prime}, \phi^{\prime}\right)=\left(\phi^{\prime}(g) \cdot g^{\prime}, \phi \cdot \phi^{\prime}\right)
$$

It is often more practical to use a subgroup of $\operatorname{Aut}(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup $\operatorname{End}(G)$ instead of the group $\operatorname{Aut}(G)$ in this construction.

Holomorph

If $H=\operatorname{Aut}(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $\operatorname{Hol}(G)$, is the set of all pairs (g, ϕ), where $g \in G, \phi \in \operatorname{Aut}(G)$, with the group operation given by

$$
(g, \phi) \cdot\left(g^{\prime}, \phi^{\prime}\right)=\left(\phi^{\prime}(g) \cdot g^{\prime}, \phi \cdot \phi^{\prime}\right)
$$

It is often more practical to use a subgroup of $\operatorname{Aut}(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup End (G) instead of the group $\operatorname{Aut}(G)$ in this construction

Holomorph

If $H=\operatorname{Aut}(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $\operatorname{Hol}(G)$, is the set of all pairs (g, ϕ), where $g \in G, \phi \in \operatorname{Aut}(G)$, with the group operation given by

$$
(g, \phi) \cdot\left(g^{\prime}, \phi^{\prime}\right)=\left(\phi^{\prime}(g) \cdot g^{\prime}, \phi \cdot \phi^{\prime}\right)
$$

It is often more practical to use a subgroup of $\operatorname{Aut}(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup $\operatorname{End}(G)$ instead of the group $\operatorname{Aut}(G)$ in this construction.

Thank you

