Vladimir Shpilrain
 The City College of New York shpil@groups.sci.ccny.cuny.edu

February 28, 2012

Why?

- Efficiency (smaller key size, less computation)
- Trying to do something useful

Why?

- Efficiency (smaller key size, less computation)
- Security (?)

- Trying to do something useful

Why?

- Efficiency (smaller key size, less computation)
- Security (?)
- Trying to do something useful

Public Key Cryptography

One-way functions

```
easy
```

$\longleftarrow \quad$ hard

Public Key Cryptography

One-way functions

easy
$\longleftarrow \quad$ hard

$$
f(x)=x^{n}
$$

Public Key Cryptography

One-way functions

easy
$\longleftarrow \quad$ hard

$$
f(x)=x^{n}
$$

Trapdoor!

Public Key Cryptography

- Encryption
- Key agreement (a.k.a. key exchange, a.k.a. key establishment)

- Authentication

Public Key Cryptography

- Encryption
- Key agreement (a.k.a. key exchange, a.k.a. key establishment)
- Authentication

Encryption from key agreement

Let $K \in\{0,1\}^{n}$ be the parties' (Alice and Bob) shared secret key.
Bob encrypts his message $m \in\{0,1\}^{n}$ as

$$
E(m)=m \oplus K,
$$

where \oplus is addition modulo 2 .
Alice decrypts as

$$
E(m) \oplus K=(m \oplus K) \oplus K=m \oplus(K \oplus K)=m .
$$

If the adversary can somehow decrypt and recover m, then she can also recover $K=m \oplus E(m)=m \oplus(m \oplus K)$.

Encryption from key agreement

Let $K \in\{0,1\}^{n}$ be the parties' (Alice and Bob) shared secret key.
Bob encrypts his message $m \in\{0,1\}^{n}$ as

$$
E(m)=m \oplus K,
$$

where \oplus is addition modulo 2 .
Alice decrypts as

$$
E(m) \oplus K=(m \oplus K) \oplus K=m \oplus(K \oplus K)=m .
$$

If the adversary can somehow decrypt and recover m, then she can also recover $K=m \oplus E(m)=m \oplus(m \oplus K)$.

The Diffie-Hellman key establishment (1976)

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.
2. Alice picks a random natural number a and sends g^{a} to Bob.
3. Bob picks a random natural number b and sends g^{b} to Alice.
4. Alice computes $K_{A}=\left(g^{b}\right)^{a}=g^{b a}$.
5. Bob computes $K_{B}=\left(g^{a}\right)^{b}=g^{a b}$.

Since $a b=b a$ (because \mathbb{Z} is commutative), both Alice and Bob are now in possession of the same group element $K=K_{A}=K_{B}$ which can serve as the shared secret key.

Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.
2. Alice picks a random natural number a and sends g^{a} to Bob.
3. Bob picks a random natural number b and sends g^{b} to Alice.
4. Alice computes $K_{A}=\left(g^{b}\right) \cdot\left(g^{a}\right)=g^{b+a}$.
5. Bob computes $K_{B}=\left(g^{a}\right) \cdot\left(g^{b}\right)=g^{a+b}$.

Obviously, $K_{A}=K_{B}=K$, which can serve as the shared secret key.
anybody can obtain K the same way!

Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.
2. Alice picks a random natural number a and sends g^{a} to Bob.
3. Bob picks a random natural number b and sends g^{b} to Alice.
4. Alice computes $K_{A}=\left(g^{b}\right) \cdot\left(g^{a}\right)=g^{b+a}$.
5. Bob computes $K_{B}=\left(g^{a}\right) \cdot\left(g^{b}\right)=g^{a+b}$.

Obviously, $K_{A}=K_{B}=K$, which can serve as the shared secret key.

Drawback: anybody can obtain K the same way!

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to recover $g^{a b}$ from $\left(g, g^{a}, g^{b}\right)$.

More formally: A CDH algorithm F for a family of groups G is a probabilistic polynomial time (in $|G|$) algorithm satisfying, for some fixed $\alpha>0$ and sufficiently large $n=\log |G|$,

> The probability is over a uniformly random choice of a and b. We say that a family of groups G satisfies the CDH assumption if there is no CDH algorithm for that family.

Example: $G=\mathbb{Z}_{p}^{*}$
Discrete log problem recover a from g^{a} mod p.

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to recover $g^{a b}$ from $\left(g, g^{a}, g^{b}\right)$.

More formally: A CDH algorithm F for a family of groups G is a probabilistic polynomial time (in $|G|$) algorithm satisfying, for some fixed $\alpha>0$ and sufficiently large $n=\log |G|$,

$$
\mathbb{P}\left[F\left(g, G, g^{a}, g^{b}\right)=g^{a b}\right]>\frac{1}{n^{\alpha}}
$$

The probability is over a uniformly random choice of a and b. We say that a family of groups G satisfies the CDH assumption if there is no CDH algorithm for that family.

Example: $G=\mathbb{Z}_{p}^{*}$
Discrete log problem: recover a from $g^{a} \bmod p$.

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to recover $g^{a b}$ from $\left(g, g^{a}, g^{b}\right)$.

More formally: A CDH algorithm F for a family of groups G is a probabilistic polynomial time (in $|G|$) algorithm satisfying, for some fixed $\alpha>0$ and sufficiently large $n=\log |G|$,

$$
\mathbb{P}\left[F\left(g, G, g^{a}, g^{b}\right)=g^{a b}\right]>\frac{1}{n^{\alpha}}
$$

The probability is over a uniformly random choice of a and b. We say that a family of groups G satisfies the CDH assumption if there is no CDH algorithm for that family.

Example: $G=\mathbb{Z}_{\rho}^{*}$
Discrete log problem: recover a from $g^{a} \bmod p$.

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to recover $g^{a b}$ from $\left(g, g^{a}, g^{b}\right)$.

More formally: A CDH algorithm F for a family of groups G is a probabilistic polynomial time (in $|G|$) algorithm satisfying, for some fixed $\alpha>0$ and sufficiently large $n=\log |G|$,

$$
\mathbb{P}\left[F\left(g, G, g^{a}, g^{b}\right)=g^{a b}\right]>\frac{1}{n^{\alpha}}
$$

The probability is over a uniformly random choice of a and b. We say that a family of groups G satisfies the CDH assumption if there is no CDH algorithm for that family.

Example: $G=\mathbb{Z}_{\rho}^{*}$
Discrete log problem: recover a from $g^{a} \bmod p$.

Security assumptions 2

Decision Diffie-Hellman (DDH) assumption: no efficient algorithm exists that can distinguish between the two probability distributions $\left(g^{a}, g^{b}, g^{a b}\right)$ and $\left(g^{a}, g^{b}, g^{c}\right)$, where a, b and c are chosen at random.

This is a stronger assumption, but at least it can be supported by statistical experiments.

Security assumptions 2

Decision Diffie-Hellman (DDH) assumption: no efficient algorithm exists that can distinguish between the two probability distributions $\left(g^{a}, g^{b}, g^{a b}\right)$ and $\left(g^{a}, g^{b}, g^{c}\right)$, where a, b and c are chosen at random.

This is a stronger assumption, but at least it can be supported by statistical experiments.

Efficiency for legitimate parties

Exponentiation by "square-and-multiply":

Complexity of computing g^{n} is therefore $O(\log n)$, times complexity of reducing $\bmod p$ (more generally, reducing to a "normal form").

Efficiency for legitimate parties

Exponentiation by "square-and-multiply":

$$
g^{22}=\left(\left(\left(g^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(g^{2}\right)^{2} \cdot g^{2}
$$

Complexity of computing g^{n} is therefore $O(\log n)$, times complexity of reducing $\bmod p$ (more generally, reducing to a "normal form").

Efficiency for legitimate parties

Exponentiation by "square-and-multiply":

$$
g^{22}=\left(\left(\left(g^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(g^{2}\right)^{2} \cdot g^{2}
$$

Complexity of computing g^{n} is therefore $O(\log n)$, times complexity of reducing $\bmod p$ (more generally, reducing to a "normal form").

Authentication from Diffie-Hellman

Alice is the prover, and Bob the verifier. Alice's public key is g^{a}.

1. Bob picks a random natural number b and sends a challenge g^{b} to Alice.
2. Alice responds with a proof $P=\left(g^{b}\right)^{a}=g^{b a}$.
3. Bob verifies: $\left(g^{a}\right)^{b}=P$?

RSA

1. Alice's private key is a pair of large primes p, q, and her public key consists of: (1) the product $n=p q$; (2) an integer e such that $1<e<\varphi(n)$, and e and $\varphi(n)$ are relatively prime. Here $\varphi(n)=(p-1)(q-1)$, the Euler function of n.
2. To encrypt his message m, which is an integer, $0<m<n$, Bob computes $c \equiv m^{e}(\bmod n)$ and sends c to Alice.
3. To decrypt, Alice first finds an integer d such that $d e \equiv 1(\bmod \varphi(n))$. Then she computes:

$$
c^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{e d} \quad(\bmod n)
$$

Now, since ed $=1+k \varphi(n)$, one has

$$
m^{e d} \equiv m^{1+k \varphi(n)} \equiv m\left(m^{k}\right)^{\varphi(n)} \equiv m \quad(\bmod n) .
$$

The last congruence follows directly from Euler's generalization of Fermat's little theorem if m is relatively prime to n. By using the Chinese remainder theorem it can be shown that this congruence holds for all m.

Security assumption

No efficient (i.e., polynomial time in $\log n$) algorithm exists for factoring $n=p q$. This is necessary, but is not known to be sufficient.

Security assumption

No efficient (i.e., polynomial time in $\log n$) algorithm exists for factoring $n=p q$.

This is necessary, but is not known to be sufficient.

Rabin's cryptosystem

1. Alice's private key is a pair of large primes p, q, where $p \equiv q \equiv 3(\bmod 4)$, and her public key is the product $n=p q$.
2. If Bob wants to encrypt his message m, which is an integer, $0<m<n$, he computes $c \equiv m^{2}(\bmod n)$ and sends c to Alice.
3. Alice computes square roots of c modulo p and modulo q :

$$
m_{p}=c^{\frac{(p+1)}{4}} \bmod p
$$

and

$$
m_{q}=c^{\frac{(q+1)}{4}} \bmod q .
$$

Then, by using the Chinese remainder theorem, she computes the four square roots of $c(\bmod n)$:

$$
\begin{aligned}
& \pm r=\left(y_{p} \cdot p \cdot m_{q}+y_{q} \cdot q \cdot m_{p}\right) \bmod n \\
& \pm s=\left(y_{p} \cdot p \cdot m_{q}-y_{q} \cdot q \cdot m_{p}\right) \bmod n .
\end{aligned}
$$

Here y_{p} and y_{q}, such that $y_{p} \cdot p+y_{q} \cdot q=1$, can be found by using Euclidean algorithm.

Rabin's cryptosystem (cont.)

Major disadvantage: only one out of four square roots is the actual message m.
Major advantage: finding all four square roots of a given c is polynomial-time equivalent to factoring $n=p q$.

If $n=p q$, then, given a square $x^{2}(\bmod n)$, there are four different square roots, call them $\pm x$ and $\pm y$. If we know x and y, then $(x-y)(x+y)=x^{2}-y^{2}=0 \quad(\bmod n)$
Therefore, $n=p q$ divides $(x-y)(x+y)$, so either p divides $(x+y)$ and q divides $(x-y)$ or vice versa. In either case we can easily find one of the prime factors of n by computing g.c.d. $(x+y, n)$ using Euclidean algorithm.

Rabin's cryptosystem (cont.)

Major disadvantage: only one out of four square roots is the actual message m.
Major advantage: finding all four square roots of a given c is polynomial-time equivalent to factoring $n=p q$.

If $n=p q$, then, given a square $x^{2}(\bmod n)$, there are four different square roots, call them $\pm x$ and $\pm y$. If we know x and y, then $(x-y)(x+y)=x^{2}-y^{2}=0 \quad(\bmod n)$.
Therefore, $n=p q$ divides $(x-y)(x+y)$, so either p divides $(x+y)$ and q divides $(x-y)$ or vice versa. In either case we can easily find one of the prime factors of n by computing g.c.d. $(x+y, n)$ using Euclidean algorithm.

Rabin's cryptosystem (cont.)

Major disadvantage: only one out of four square roots is the actual message m.
Major advantage: finding all four square roots of a given c is polynomial-time equivalent to factoring $n=p q$.

If $n=p q$, then, given a square $x^{2}(\bmod n)$, there are four different square roots, call them $\pm x$ and $\pm y$. If we know x and y, then

$$
(x-y)(x+y)=x^{2}-y^{2}=0 \quad(\bmod n)
$$

Therefore, $n=p q$ divides $(x-y)(x+y)$, so either p divides $(x+y)$ and q divides $(x-y)$ or vice versa. In either case we can easily find one of the prime factors of n by computing g.c.d. $(x+y, n)$ using Euclidean algorithm.

"Mock RSA"

There is a public group G and a public automorphism φ of G. Alice's private key is φ^{-1}.

1. Encryption: Bob sends $\varphi(w)$ to Alice, where $w \in G$ is his secret message.
2. Alice decrypts: $w=\varphi^{-1}(\varphi(w))$.

"Mock RSA"

There is a public group G and a public automorphism φ of G. Alice's private key is φ^{-1}.

1. Encryption: Bob sends $\varphi(w)$ to Alice, where $w \in G$ is his secret message.
2. Alice decrypts: $w=\varphi^{-1}(\varphi(w))$.

This encryption is homomorphic!

Thank you

