
Non-commutative cryptography

Vladimir Shpilrain
The City College of New York

shpil@groups.sci.ccny.cuny.edu

February 28, 2012

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 1 / 17

Why?

• Efficiency (smaller key size, less computation)

• Security (?)

• Trying to do something useful

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 2 / 17

Why?

• Efficiency (smaller key size, less computation)

• Security (?)

• Trying to do something useful

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 2 / 17

Why?

• Efficiency (smaller key size, less computation)

• Security (?)

• Trying to do something useful

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 2 / 17

Public Key Cryptography

One-way functions

−→ easy ←− hard

f (x) = xn

Trapdoor !

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 3 / 17

Public Key Cryptography

One-way functions

−→ easy ←− hard

f (x) = xn

Trapdoor !

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 3 / 17

Public Key Cryptography

One-way functions

−→ easy ←− hard

f (x) = xn

Trapdoor !

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 3 / 17

Public Key Cryptography

• Encryption

• Key agreement (a.k.a. key exchange, a.k.a. key establishment)

• Authentication

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 4 / 17

Public Key Cryptography

• Encryption

• Key agreement (a.k.a. key exchange, a.k.a. key establishment)

• Authentication

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 4 / 17

Encryption from key agreement

Let K ∈ {0, 1}n be the parties’ (Alice and Bob) shared secret key.

Bob encrypts his message m ∈ {0, 1}n as

E (m) = m ⊕ K ,

where ⊕ is addition modulo 2.

Alice decrypts as

E (m)⊕ K = (m ⊕ K)⊕ K = m ⊕ (K ⊕ K) = m.

If the adversary can somehow decrypt and recover m, then she can also recover
K = m ⊕ E (m) = m ⊕ (m ⊕ K).

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 5 / 17

Encryption from key agreement

Let K ∈ {0, 1}n be the parties’ (Alice and Bob) shared secret key.

Bob encrypts his message m ∈ {0, 1}n as

E (m) = m ⊕ K ,

where ⊕ is addition modulo 2.

Alice decrypts as

E (m)⊕ K = (m ⊕ K)⊕ K = m ⊕ (K ⊕ K) = m.

If the adversary can somehow decrypt and recover m, then she can also recover
K = m ⊕ E (m) = m ⊕ (m ⊕ K).

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 5 / 17

The Diffie-Hellman key establishment (1976)

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g
in G . We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g a to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb)a = gba.

5. Bob computes KB = (g a)b = g ab.

Since ab = ba (because Z is commutative), both Alice and Bob are now in
possession of the same group element K = KA = KB which can serve as the
shared secret key.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 6 / 17

Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g
in G . We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g a to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb) · (g a) = gb+a.

5. Bob computes KB = (g a) · (gb) = g a+b.

Obviously, KA = KB = K , which can serve as the shared secret key.

Drawback: anybody can obtain K the same way!

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 7 / 17

Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g
in G . We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g a to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb) · (g a) = gb+a.

5. Bob computes KB = (g a) · (gb) = g a+b.

Obviously, KA = KB = K , which can serve as the shared secret key.

Drawback: anybody can obtain K the same way!

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 7 / 17

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to
recover g ab from (g , g a, gb).

Definition
More formally: A CDH algorithm F for a family of groups G is a probabilistic
polynomial time (in |G |) algorithm satisfying, for some fixed α > 0 and
sufficiently large n = log |G |,

P[F (g ,G , g a, gb) = g ab] >
1

nα
.

The probability is over a uniformly random choice of a and b. We say that a
family of groups G satisfies the CDH assumption if there is no CDH algorithm for
that family.

Example: G = Z∗p
Discrete log problem: recover a from g a mod p.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 8 / 17

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to
recover g ab from (g , g a, gb).

Definition
More formally: A CDH algorithm F for a family of groups G is a probabilistic
polynomial time (in |G |) algorithm satisfying, for some fixed α > 0 and
sufficiently large n = log |G |,

P[F (g ,G , g a, gb) = g ab] >
1

nα
.

The probability is over a uniformly random choice of a and b. We say that a
family of groups G satisfies the CDH assumption if there is no CDH algorithm for
that family.

Example: G = Z∗p
Discrete log problem: recover a from g a mod p.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 8 / 17

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to
recover g ab from (g , g a, gb).

Definition
More formally: A CDH algorithm F for a family of groups G is a probabilistic
polynomial time (in |G |) algorithm satisfying, for some fixed α > 0 and
sufficiently large n = log |G |,

P[F (g ,G , g a, gb) = g ab] >
1

nα
.

The probability is over a uniformly random choice of a and b. We say that a
family of groups G satisfies the CDH assumption if there is no CDH algorithm for
that family.

Example: G = Z∗p
Discrete log problem: recover a from g a mod p.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 8 / 17

Security assumptions 1

Computational Diffie-Hellman (CDH) assumption: no efficient algorithm exists to
recover g ab from (g , g a, gb).

Definition
More formally: A CDH algorithm F for a family of groups G is a probabilistic
polynomial time (in |G |) algorithm satisfying, for some fixed α > 0 and
sufficiently large n = log |G |,

P[F (g ,G , g a, gb) = g ab] >
1

nα
.

The probability is over a uniformly random choice of a and b. We say that a
family of groups G satisfies the CDH assumption if there is no CDH algorithm for
that family.

Example: G = Z∗p
Discrete log problem: recover a from g a mod p.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 8 / 17

Security assumptions 2

Decision Diffie-Hellman (DDH) assumption: no efficient algorithm exists that can
distinguish between the two probability distributions (g a, gb, g ab) and
(g a, gb, g c), where a, b and c are chosen at random.

This is a stronger assumption, but at least it can be supported by statistical
experiments.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 9 / 17

Security assumptions 2

Decision Diffie-Hellman (DDH) assumption: no efficient algorithm exists that can
distinguish between the two probability distributions (g a, gb, g ab) and
(g a, gb, g c), where a, b and c are chosen at random.

This is a stronger assumption, but at least it can be supported by statistical
experiments.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 9 / 17

Efficiency for legitimate parties

Exponentiation by “square-and-multiply”:

g22 = (((g2)2)2)2 · (g2)2 · g2

Complexity of computing gn is therefore O(log n), times complexity of reducing
mod p (more generally, reducing to a “normal form”).

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 10 / 17

Efficiency for legitimate parties

Exponentiation by “square-and-multiply”:

g22 = (((g2)2)2)2 · (g2)2 · g2

Complexity of computing gn is therefore O(log n), times complexity of reducing
mod p (more generally, reducing to a “normal form”).

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 10 / 17

Efficiency for legitimate parties

Exponentiation by “square-and-multiply”:

g22 = (((g2)2)2)2 · (g2)2 · g2

Complexity of computing gn is therefore O(log n), times complexity of reducing
mod p (more generally, reducing to a “normal form”).

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 10 / 17

Authentication from Diffie-Hellman

Alice is the prover, and Bob the verifier. Alice’s public key is g a.

1. Bob picks a random natural number b and sends a challenge gb to Alice.

2. Alice responds with a proof P = (gb)a = gba.

3. Bob verifies: (g a)b = P?

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 11 / 17

RSA

1. Alice’s private key is a pair of large primes p, q, and her public key consists
of: (1) the product n = pq; (2) an integer e such that 1 < e < ϕ(n), and e
and ϕ(n) are relatively prime. Here ϕ(n) = (p − 1)(q − 1), the Euler
function of n.

2. To encrypt his message m, which is an integer, 0 < m < n, Bob computes
c ≡ me (mod n) and sends c to Alice.

3. To decrypt, Alice first finds an integer d such that de ≡ 1 (mod ϕ(n)).
Then she computes:

cd ≡ (me)d ≡ med (mod n).

Now, since ed = 1 + kϕ(n), one has

med ≡ m1+kϕ(n) ≡ m(mk)ϕ(n) ≡ m (mod n).

The last congruence follows directly from Euler’s generalization of Fermat’s
little theorem if m is relatively prime to n. By using the Chinese remainder
theorem it can be shown that this congruence holds for all m.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 12 / 17

Security assumption

No efficient (i.e., polynomial time in log n) algorithm exists for factoring n = pq.

This is necessary, but is not known to be sufficient.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 13 / 17

Security assumption

No efficient (i.e., polynomial time in log n) algorithm exists for factoring n = pq.

This is necessary, but is not known to be sufficient.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 13 / 17

Rabin’s cryptosystem

1. Alice’s private key is a pair of large primes p, q, where p ≡ q ≡ 3 (mod 4),
and her public key is the product n = pq.

2. If Bob wants to encrypt his message m, which is an integer, 0 < m < n, he
computes c ≡ m2 (mod n) and sends c to Alice.

3. Alice computes square roots of c modulo p and modulo q:

mp = c
(p+1)

4 mod p

and
mq = c

(q+1)
4 mod q.

Then, by using the Chinese remainder theorem, she computes the four
square roots of c (mod n):

±r = (yp · p ·mq + yq · q ·mp) mod n

±s = (yp · p ·mq − yq · q ·mp) mod n.

Here yp and yq, such that yp · p + yq · q = 1, can be found by using
Euclidean algorithm.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 14 / 17

Rabin’s cryptosystem (cont.)

Major disadvantage: only one out of four square roots is the actual message m.

Major advantage: finding all four square roots of a given c is polynomial-time
equivalent to factoring n = pq.

If n = pq, then, given a square x2 (mod n), there are four different square roots,
call them ±x and ±y . If we know x and y , then

(x − y)(x + y) = x2 − y2 = 0 (mod n).

Therefore, n = pq divides (x − y)(x + y), so either p divides (x + y) and q
divides (x − y) or vice versa. In either case we can easily find one of the prime
factors of n by computing g .c .d .(x + y , n) using Euclidean algorithm.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 15 / 17

Rabin’s cryptosystem (cont.)

Major disadvantage: only one out of four square roots is the actual message m.

Major advantage: finding all four square roots of a given c is polynomial-time
equivalent to factoring n = pq.

If n = pq, then, given a square x2 (mod n), there are four different square roots,
call them ±x and ±y . If we know x and y , then

(x − y)(x + y) = x2 − y2 = 0 (mod n).

Therefore, n = pq divides (x − y)(x + y), so either p divides (x + y) and q
divides (x − y) or vice versa. In either case we can easily find one of the prime
factors of n by computing g .c .d .(x + y , n) using Euclidean algorithm.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 15 / 17

Rabin’s cryptosystem (cont.)

Major disadvantage: only one out of four square roots is the actual message m.

Major advantage: finding all four square roots of a given c is polynomial-time
equivalent to factoring n = pq.

If n = pq, then, given a square x2 (mod n), there are four different square roots,
call them ±x and ±y . If we know x and y , then

(x − y)(x + y) = x2 − y2 = 0 (mod n).

Therefore, n = pq divides (x − y)(x + y), so either p divides (x + y) and q
divides (x − y) or vice versa. In either case we can easily find one of the prime
factors of n by computing g .c .d .(x + y , n) using Euclidean algorithm.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 15 / 17

“Mock RSA”

There is a public group G and a public automorphism ϕ of G . Alice’s private key
is ϕ−1.

1. Encryption: Bob sends ϕ(w) to Alice, where w ∈ G is his secret message.

2. Alice decrypts: w = ϕ−1(ϕ(w)).

This encryption is homomorphic !

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 16 / 17

“Mock RSA”

There is a public group G and a public automorphism ϕ of G . Alice’s private key
is ϕ−1.

1. Encryption: Bob sends ϕ(w) to Alice, where w ∈ G is his secret message.

2. Alice decrypts: w = ϕ−1(ϕ(w)).

This encryption is homomorphic !

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 16 / 17

Thank you

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu ()Non-commutative cryptography February 28, 2012 17 / 17

