COMPUTING IN COMMUTATIVE ALGEBRA

GERHARD PFISTER

St. John's, October 04–08, 2010

1. STANDARD BASES AND SINGULAR

SINGULAR is available, free of charge, as a binary programme for most common hardware and software platforms. Release versions of SINGULAR can be downloaded through ftp from our FTP site

ftp://www.mathematik.uni-kl.de/pub/Math/Singular/,

or, using your favourite WWW browser, from

http://www.singular.uni-kl.de/download.html

The basis of SINGULAR is multivariate polynomial factorization and standard bases computations.

We explain first of all the notion of a Gröbner basis (with respect to any ordering) as the basis for computations in localizations of factorrings of polynomial rings. The presentation of a polynomial as a linear combination of monomials is unique only up to an order of the summands, due to the commutativity of the addition. We can make this order unique by choosing a total ordering on the set of monomials. For further applications it is necessary, however, that the ordering is compatible with the semigroup structure on Mon_n .

We give here only the important definitions, theorems and examples. Proofs can be found in [7]. The SINGULAR examples can be found on the CD in [7].

Definition 1.1. A monomial ordering *or* semigroup ordering *is a total (or linear) ordering* > *on the set of monomials* $\operatorname{Mon}_n = \{x^{\alpha} \mid \alpha \in \mathbb{N}^n\}$ *in n variables satisfying*

$$x^{\alpha} > x^{\beta} : \implies : x^{\gamma} x^{\alpha} > x^{\gamma} x^{\beta}$$

for all $\alpha, \beta, \gamma \in \mathbb{N}^n$. We say also > is a monomial ordering on $A[x_1, \ldots, x_n]$, A any ring, meaning that > is a monomial ordering on Mon_n .

Definition 1.2. Let > be a fixed monomial ordering. Write $f \in K[x]$, $f \neq 0$, in a unique way as a sum of non–zero terms

$$f = a_{\alpha}x^{\alpha} + a_{\beta}x^{\beta} + \dots + a_{\gamma}x^{\gamma}, \quad x^{\alpha} > x^{\beta} > \dots > x^{\gamma},$$

and $a_{\alpha}, a_{\beta}, \dots, a_{\gamma} \in K$. We define:

- (1) $LM(f) := leadmonom(f) := x^{\alpha}$, the leading monomial of f,
- (2) $LE(f) := leadexp(f) := \alpha$, the leading exponent of f,
- (3) $LT(f) := lead(f) := a_{\alpha}x^{\alpha}$, the leading term or head of f,
- (4) $LC(f) := leadcoef(f) := a_{\alpha}$, the leading coefficient of f
- (5) $tail(f) := f lead(f) = a_{\beta}x^{\beta} + \dots + a_{\gamma}x^{\gamma}$, the tail.
- (6) ecart(f) := deg(f) deg(LM(f)).

SINGULAR Example 1.

```
ring A = 0, (x,y,z), lp;
poly f = y4z3+2x2y2z2+3x5+4z4+5y2;
f;
                            //display f in a lex-ordered way
//-> 3x5+2x2y2z2+y4z3+5y2+4z4
leadmonom(f);
                            //leading monomial
//-> x5
leadexp(f);
                           //leading exponent
//-> 5,0,0
lead(f);
                            //leading term
//-> 3x5
leadcoef(f);
                            //leading coefficient
//-> 3
f - lead(f);
                            //tail
//-> 2x2y2z2+y4z3+5y2+4z4
```

Definition 1.3. Let > be a monomial ordering on $\{x^{\alpha} \mid \alpha \in \mathbb{N}^n\}$.

- (1) > is called a global ordering if $x^{\alpha} > 1$ for all $\alpha \neq (0, ..., 0)$,
- (2) > is called a local ordering if $x^{\alpha} < 1$ for all $\alpha \neq (0, ..., 0)$,
- (3) > is called a mixed ordering if it is neither global nor local.

Lemma 1.4. Let > be a monomial ordering, then the following conditions are equivalent:

- (1) > is a well-ordering.
- (2) $x_i > 1$ for i = 1, ..., n.
- (3) $x^{\alpha} > 1$ for all $\alpha \neq (0, ..., 0)$, that is, > is global.

In the following examples we fix an enumeration x_1, \ldots, x_n of the variables, any other enumeration leads to a different ordering.

GLOBAL ORDERINGS

(i) Lexicographical ordering $>_{lp}$ (also denoted by lex):

$$x^{\alpha} >_{lp} x^{\beta} : \iff \exists \ 1 \leq i \leq n : \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i.$$

(ii) *Degree reverse lexicographical ordering* $>_{dp}$ (denoted by degrevlex):

$$x^{\alpha}>_{dp}x^{\beta}$$
 : \iff : $\deg x^{\alpha}>\deg x^{\beta}$ or : $(\deg x^{\alpha}=\deg x^{\beta} \text{ and } \exists \ 1\leq i\leq n:$ $\alpha_n=\beta_n,\ldots,\alpha_{i+1}=\beta_{i+1},\ \alpha_i<\beta_i)$,

where $\deg x^{\alpha} = \alpha_1 + \cdots + \alpha_n$.

LOCAL ORDERINGS

(i) Negative lexicographical ordering $>_{ls}$:

$$x^{\alpha} >_{ls} x^{\beta}$$
: $\iff \exists 1 \leq i \leq n, \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i$.

(ii) Negative degree reverse lexicographical ordering:

$$x^{\alpha} >_{ds} x^{\beta}$$
 : \iff : $\deg x^{\alpha} < \deg x^{\beta}$, where $\deg x^{\alpha} = \alpha_1 + \dots + \alpha_n$, or : $(\deg x^{\alpha} = \deg x^{\beta} \text{ and } \exists \ 1 \leq i \leq n :$

$$\alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i).$$

Let > be a monomial ordering on the set of monomials $\operatorname{Mon}(x_1, \ldots, x_n) = \{x^{\alpha} \mid \alpha \in \mathbb{N}^n\}$, and $K[x] = K[x_1, \ldots, x_n]$ the polynomial ring in n variables over a field K. Then the leading monomial function LM has the following properties for polynomials $f, g \in K[x] \setminus \{0\}$:

- (1) LM(gf) = LM(g)LM(f).
- (2) $LM(g+f) \le max\{LM(g),LM(f)\}$ with equality if and only if the leading terms of f and g do not cancel.

In particular, it follows that

$$S_{>} := \{ u \in K[x] \setminus \{0\} \mid LM(u) = 1 \}$$

is a multiplicatively closed set.

Definition 1.5. For any monomial ordering > on $Mon(x_1, ..., x_n)$, we define

$$K[x]_{>} := S_{>}^{-1}K[x] = \left\{ \frac{f}{u} \mid f, u \in K[x], LM(u) = 1 \right\},$$

the localization of K[x] with respect to $S_>$ and call $K[x]_>$ the ring associated to K[x] and >.

Note that $S_> = K^*$ if and only if > is global and $S_> = K[x] \setminus \langle x_1, \dots, x_n \rangle$ if and only if > is local.

Definition 1.6. *Let* > *be any monomial ordering:*

(1) For $f \in K[x]$ choose $u \in K[x]$ such that LT(u) = 1 and $uf \in K[x]$. We define

$$\begin{split} LM(f) &:= LM(uf), \\ LC(f) &:= LC(uf), \\ LT(f) &:= LT(uf), \\ LE(f) &:= LE(uf), \end{split}$$

and tail(f) = f - LT(f).

(2) For any subset $G \subset K[x]_{>}$ define the ideal

$$L_{>}(G) := L(G) := \langle LM(g) \mid g \in G \setminus \{0\} \rangle_{K[x]}.$$

 $L(G) \subset K[x]$ is called the leading ideal of G.

Definition 1.7. *Let* $I \subset R = K[x]_{>}$ *be an ideal.*

(1) A finite set $G \subset R$ is called a standard basis of I if

$$G \subset I$$
, and $L(I) = L(G)$.

That is, G is a standard basis, if the leading monomials of the elements of G generate the leading ideal of I, or, in other words, if for any $f \in I \setminus \{0\}$ there exists $a g \in G$ satisfying $LM(g) \mid LM(f)$.

- (2) If > is global, a standard basis is also called a Gröbner basis.
- (3) If we just say that G is a standard basis, we mean that G is a standard basis of the ideal $\langle G \rangle_R$ generated by G.

Standard bases can be characterized using the notion of the normal form. We need the following definitions:

Definition 1.8. Let
$$f, g \in R \setminus \{0\}$$
 with $LM(f) = x^{\alpha}$ and $LM(g) = x^{\beta}$, respectively. Set $\gamma := \text{lcm}(\alpha, \beta) := (\text{max}(\alpha_1, \beta_1), \dots, \text{max}(\alpha_n, \beta_n))$

and let $lcm(x^{\alpha}, x^{\beta}) := x^{\gamma}$ be the least common multiple of x^{α} and x^{β} . We define the spolynomial (spoly, for short) of f and g to be

$$spoly(f,g) := x^{\gamma-\alpha}f - \frac{LC(f)}{LC(g)} \cdot x^{\gamma-\beta}g.$$

If LM(g) divides LM(f), say $LM(g) = x^{\beta}$, $LM(f) = x^{\alpha}$, then the s-polynomial is particularly simple,

$$spoly(f,g) = f - \frac{LC(f)}{LC(g)} \cdot x^{\alpha-\beta}g$$
,

and LM(spoly(f,g)) < LM(f).

Definition 1.9. Let \mathscr{G} denote the set of all finite lists $G \subset R = K[x]_{>}$.

$$NF: R \times \mathscr{G} \to R, (f, G) \mapsto NF(f \mid G),$$

is called a normal form on R if, for all $G \in \mathcal{G}$,

(0) $NF(0 \mid G) = 0$,

and, for all $f \in R$ and $G \in \mathcal{G}$,

- (1) $NF(f \mid G) \neq 0 \Longrightarrow LM(NF(f \mid G)) \notin L(G)$.
- (2) If $G = \{g_1, ..., g_s\}$, then f has a standard representation with respect to $NF(- \mid G)$, that is, there exists a unit $u \in R^*$ such that

$$uf - NF(f \mid G) = \sum_{i=1}^{s} a_i g_i, \ a_i \in R, \ s \ge 0,$$

satisfying $LM(\sum_{i=1}^{s} a_i g_i) \ge LM(a_i g_i)$ for all i such that $a_i g_i \ne 0$.

The existence of a normal form is given by the following algorithm:

Algorithm 1.10. $NF(f \mid G)$

Let > *be any monomial ordering.*

Input: $f \in K[x]$, G a finite list in K[x]

Output: $h \in K[x]$ a polynomial normal form of f with respect to G.

- h := f;
- T := G;
- while $(h \neq 0 \text{ and } T_h := \{g \in T \mid LM(g) \mid LM(h)\} \neq \emptyset)$ choose $g \in T_h$ with ecart(g) minimal; if (ecart(g) > ecart(h)) $T := T \cup \{h\};$ h := spoly(h, g);
- return h;

Theorem 1.11. Let $I \subset R$ be an ideal and $G = \{g_1, \ldots, g_s\} \subset I$. Then the following are equivalent:

- (1) G is a standard basis of I.
- (2) $NF(f \mid G) = 0$ if and only if $f \in I$.

We will explain now how to use standard bases to solve problems in algebra.

Ideal membership

Problem: Given $f, f_1, \ldots, f_k \in K[x]$, and let $I = \langle f_1, \ldots, f_k \rangle_R$. We wish to decide whether $f \in I$, or not.

Solution: We choose any monomial ordering > such that $K[x]_> = R$ and compute a standard basis $G = \{g_1, \dots, g_s\}$ of I with respect to >. $f \in I$ if and only if $NF(f \mid G) = 0$.

SINGULAR Example 2.

Intersection with Subrings (Elimination of variables)

Problem: Given $f_1, \ldots, f_k \in K[x] = K[x_1, \ldots, x_n]$, $I = \langle f_1, \ldots, f_k \rangle_{K[x]}$, we should like to find generators of the ideal

$$I' = I \cap K[x_{s+1}, \dots, x_n], \quad s < n.$$

Elements of the ideal I' are said to be obtained from f_1, \ldots, f_k by eliminating x_1, \ldots, x_s . The following lemma is the basis for solving the elimination problem.

Lemma 1.12. Let > be an elimination ordering for x_1, \ldots, x_s on the set of monomials $\text{Mon}(x_1, \ldots, x_n)$, and let $I \subset K[x_1, \ldots, x_n]_>$ be an ideal. If $S = \{g_1, \ldots, g_k\}$ is a standard basis of I, then

$$S' := \{g \in S \mid LM(g) \in K[x_{s+1}, \dots, x_n]\}$$

is a standard basis of $I' := I \cap K[x_{s+1}, \dots, x_n]_{>'}$. In particular, S' generates the ideal I'.

SINGULAR Example 3.

Radical Membership

Problem: Let $f_1, \ldots, f_k \in K[x]_>$, > a monomial ordering on $\text{Mon}(x_1, \ldots, x_n)$ and $I = \langle f_1, \ldots, f_k \rangle_{K[x]_>}$. Given some $f \in K[x]_>$ we want to decide whether $f \in \sqrt{I}$. The following lemma, which is sometimes called *Rabinowich's trick*, is the basis for solving this problem. ¹

Lemma 1.13. *Let* A *be a ring,* $I \subset A$ *an ideal and* $f \in A$. *Then*

$$f \in \sqrt{I}$$
: \iff : $1 \in \tilde{I} := \langle I, 1 - tf \rangle_{A[t]}$

where t is an additional new variable.

SINGULAR Example 4.

```
ring A =0,(x,y,z),dp;
ideal I=x5,xy3,y7,z3+xyz;
poly f =x+y+z;

ring B =0,(t,x,y,z),dp; //need t for radical test
ideal I=imap(A,I);
poly f =imap(A,f);
```

¹We can even compute the full radical \sqrt{I} , but this is a much harder computation.

Intersection of Ideals

Problem: Given $f_1, \ldots, f_k, h_1, \ldots, h_r \in K[x]$ and > a monomial ordering. Let $I_1 = \langle f_1, \ldots, f_k \rangle K[x]_>$ and $I_2 = \langle h_1, \ldots, h_r \rangle K[x]_>$. We wish to find generators for $I_1 \cap I_2$. Consider the ideal $J := \langle tf_1, \ldots, tf_k, (1-t)h_1, \ldots, (1-t)h_r \rangle (K[x]_>)[t]$.

Lemma 1.14. With the above notations, $I_1 \cap I_2 = J \cap K[x]_>$.

SINGULAR Example 5.

Quotient of Ideals

Problem: Let I_1 and $I_2 \subset K[x]_>$. We want to compute

$$I_1: I_2 = \{g \in K[x] \mid gI_2 \subset I_1\}.$$

Since, obviously, $I_1: \langle h_1, \dots, h_r \rangle = \bigcap_{i=1}^r (I_1: \langle h_i \rangle)$, we can compute $I_1: \langle h_i \rangle$ for each i. The next lemma shows a way to compute $I_1: \langle h_i \rangle$.

Lemma 1.15. Let $I \subset K[x]_>$ be an ideal, and let $h \in K[x]_>$, $h \neq 0$. Moreover, let $I \cap \langle h \rangle = \langle g_1 \cdot h, \dots, g_s \cdot h \rangle$. Then $I : \langle h \rangle = \langle g_1, \dots, g_s \rangle_{K[x]_>}$.

SINGULAR Example 6.

```
ring A=0,(x,y,z),dp;
ideal I1=x,y;
ideal I2=y2,z;
```

```
quotient(I1,I2); //the built-in SINGULAR command //-> _{[1]=y} _{[2]=x}
```

Kernel of a Ring Map

Let $\varphi: R_1 := (K[x]_{>_1})/I \to (K[y]_{>_2})/J =: R_2$ be a ring map defined by polynomials $\varphi(x_i) = f_i \in K[y] = K[y_1, \dots, y_m]$ for $i = 1, \dots, n$ (and assume that the monomial orderings satisfy $1 >_2 LM(f_i)$ if $1 >_1 x_i$.

Define $J_0 := J \cap K[y]$, and $I_0 := I \cap K[x]$. Then φ is induced by

$$\tilde{\varphi}: K[x]/I_0 \to K[y]/J_0, \quad x_i \mapsto f_i,$$

and we have a commutative diagram

$$K[x]/I_0 \xrightarrow{\tilde{\varphi}} K[y]/J_0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Problem: Let I, J and φ be as above. Compute generators for $Ker(\varphi)$.

Solution: Assume that $J_0 = \langle g_1, \dots, g_s \rangle_{K[y]}$ and $I_0 = \langle h_1, \dots, h_t \rangle_{K[x]}$. Set $H := \langle h_1, \dots, h_t, g_1, \dots, g_s, x_1 - f_1, \dots, x_n - f_n \rangle \subset K[x, y]$, and compute $H' := H \cap K[x]$ by eliminating y_1, \dots, y_m from H. Then H' generates $Ker(\varphi)$ by the following lemma.

Lemma 1.16. With the above notations, $Ker(\varphi) = Ker(\tilde{\varphi})R_1$ and

$$\operatorname{Ker}(\tilde{\boldsymbol{\varphi}}) = (I_0 + \langle g_1, \dots, g_s, x_1 - f_1, \dots, x_n - f_n \rangle_{K[x,y]} \cap K[x]) \operatorname{mod} I_0.$$

In particular, if $>_1$ is global, then $Ker(\varphi) = Ker(\tilde{\varphi})$.

SINGULAR Example 7.

2. LECTURE: POLYNOMIAL SOLVING AND PRIMARY DECOMPOSITION

Solvability of Polynomial Equations

Problem: Given $f_1, ..., f_k \in K[x_1, ..., x_n]$, we want to assure whether the system of polynomial equations

$$f_1(x) = \dots = f_k(x) = 0$$

has a solution in \overline{K}^n , where \overline{K} is the algebraic closure of K.

Let $I = \langle f_1, \dots, f_k \rangle_{K[x]}$, then the question is whether the algebraic set $V(I) \subset \overline{K}^n$ is empty or not.

Solution: By Hilbert's Nullstellensatz, $V(I) = \emptyset$ if and only if $1 \in I$. We compute a Gröbner basis G of I with respect to any global ordering on $\operatorname{Mon}(x_1,\ldots,x_n)$ and normalize it (that is, divide every $g \in G$ by $\operatorname{LC}(g)$). Since $1 \in I$ if and only if $1 \in L(I)$, we have $V(I) = \emptyset$ if and only if 1 is an element of a normalized Gröbner basis of I. Of course, we can avoid normalizing, which is expensive in rings with parameters. Since $1 \in I$ if and only if G contains a non–zero constant polynomial, we have only to look for an element of degree 0 in G.

SINGULAR Example 8.

We use the multivariate solver based on triangular sets.

```
LIB"solve.lib";
list s1=solve(I,6);
//-> // name of new current ring: AC
s1;
//-> [1]:
                 [2]:
                         [3]:
                                       [4]:
                                                [5]:
//->
       [1]:
                    [1]:
                            [1]:
                                          [1]:
                                                   [1]:
//->
           0.414214 0
                                -2.414214
                                             1
                                                      0
       [2]:
//->
                    [2]:
                            [2]:
                                          [2]:
                                                   [2]:
//->
           0.414214 0
                                -2.414214
                                          0
                                                      1
//->
       [3]:
                    [3]:
                            [3]:
                                          [3]:
                                                   [3]:
//->
           0.414214 1
                               -2.414214
                                             0
                                                      0
```

If we want to compute the zeros with multiplicities then we use 1 as a third parameter for the command:

```
setring A;
list s2=solve(I,6,1);
s2;
//-> [1]:
                                    [2]:
//->
                                         [1]:
          [1]:
//->
               [1]:
                                             [1]:
//->
                    [1]:
                                                  [1]:
//->
                        -2.414214
                                                      0
//->
                    [2]:
                                                  [2]:
//->
                        -2.414214
                                                       1
//->
                    [3]:
                                                  [3]:
//->
                        -2.414214
                                                      0
//->
               [2]:
                                             [2]:
//->
                    [1]:
                                                  [1]:
//->
                        0.414214
                                                      1
//->
                    [2]:
                                                  [2]:
//->
                        0.414214
                                                      0
//->
                    [3]:
                                                  [3]:
//->
                        0.414214
                                                      0
//->
                                             [3]:
          [2]:
//->
               1
                                                  [1]:
//->
//->
                                                  [2]:
//->
                                                      0
//->
                                                  [3]:
//->
                                                      1
//->
                                         [2]:
//->
                                             2
```

The output has to be interpreted as follows: there are two zeros of multiplicity 1 and three zeros ((0,1,0),(1,0,0),(0,0,1)) of multiplicity 2.

Definition 2.1.

- (1) A maximal ideal $M \subset K[x_1, ..., x_n]$ is called in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$, if there exist $g_1, ..., g_n \in K[x_n]$ with $M = \langle x_1 + g_1(x_n), ..., x_{n-1} + g_{n-1}(x_n), g_n(x_n) \rangle$.
- (2) A zero-dimensional ideal $I \subset K[x_1,...,x_n]$ is called in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$, if all associated primes $P_1,...,P_k$ are in general position and if $P_i \cap K[x_n] \neq P_j \cap K[x_n]$ for $i \neq j$.

Proposition 2.2. Let K be a field of characteristic 0, and let $I \subset K[x]$, $x = (x_1, ..., x_n)$, be a zero-dimensional ideal. Then there exists a non-empty, Zariski open subset $U \subset K^{n-1}$

such that for all $\underline{a} = (a_1, ..., a_{n-1}) \in U$, the coordinate change $\varphi_{\underline{a}} : K[x] \to K[x]$ defined by $\varphi_a(x_i) = x_i$ if i < n, and

$$\varphi_{\underline{a}}(x_n) = x_n + \sum_{i=1}^{n-1} a_i x_i$$

has the property that $\varphi_{\underline{a}}(I)$ is in general position with respect to the lexicographical ordering defined by $x_1 > \cdots > x_n$.

Proposition 2.3. Let $I \subset K[x_1,...,x_n]$ be a zero-dimensional ideal. Let $\langle g \rangle = I \cap K[x_n]$, $g = g_1^{\nu_1} ... g_s^{\nu_s}$, g_i monic and prime and $g_i \neq g_j$ for $i \neq j$. Then

(1)
$$I = \bigcap_{i=1}^{s} \langle I, g_i^{v_i} \rangle$$
.

If I is in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$, then

(2) $\langle I, g_i^{V_i} \rangle$ is a primary ideal for all i.

SINGULAR Example 9 (zero-dim primary decomposition).

We give an example for a zero-dimensional primary decomposition.

```
option(redSB);
ring R=0,(x,y),lp;
ideal I=(y2-1)^2,x2-(y+1)^3;
```

The ideal *I* is not in general position with respect to 1p, since the minimal associated prime $\langle x^2 - 8, y - 1 \rangle$ is not.

```
map phi=R,x,x+y; //we choose a generic coordinate change
map psi=R,x,-x+y; //and the inverse map
I=std(phi(I));
//-> I[1]=y7-y6-19y5-13y4+99y3+221y2+175y+49
//-> I[2]=112xy+112x-27y6+64y5+431y4-264y3-2277y2-2520y-847
//-> I[3]=56x2+65y6-159y5-1014y4+662y3+5505y2+6153y+2100
factorize(I[1]);
//-> [1]:
//-> [1]=1
//-> _[2]=y2-2y-7
//-> _[3]=y+1
//-> [2]:
//-> 1,2,3
ideal Q1=std(I,(y2-2y-7)^2); //the candidates for the
                             //primary ideals
ideal Q2=std(I,(y+1)^3);  //in general position
Q1; Q2;
//-> Q1[1]=y4-4y3-10y2+28y+49
                                Q2[1]=y3+3y2+3y+1
```

```
//-> Q1[2]=56x+y3-9y2+63y-7
                                 Q2[2] = 2xy + 2x + y2 + 2y + 1
                                 Q2[3]=x2
factorize(Q1[1]);
                    //primary and general position test
                    //for Q1
//-> [1]:
        _[1]=1
//->
//->
        [2] = y2 - 2y - 7
//-> [2]:
//-> 1,2
factorize(Q2[1]);
                    //primary and general position test
                    //for Q2
//-> [1]:
//->
        _[1]=1
//->
        [2]=y+1
//-> [2]:
//->
       1,3
```

Both ideals are primary and in general position.

```
Q1=std(psi(Q1)); //the inverse coordinate change Q2=std(psi(Q2)); //the result Q1; Q2; //-> Q1[1]=y2-2y+1 Q2[1]=y2+2y+1 //-> Q1[2]=x2-12y+4 Q2[2]=x2
```

We obtain that *I* is the intersection of the primary ideals Q_1 and Q_2 with associated prime ideals $\langle y-1, x^2-8 \rangle$ and $\langle y+1, x \rangle$.

The following proposition reduces the higher dimensional case to the zero-dimensional case:

Proposition 2.4. Let $I \subset K[x]$ be an ideal and $u \subset x = \{x_1, ..., x_n\}$ be a maximal independent set of variables² with respect to I.

- (1) $IK(u)[x \setminus u] \subset K(u)[x \setminus u]$ is a zero-dimensional ideal.
- (2) Let $S = \{g_1, ..., g_s\} \subset I \subset K[x]$ be a Gröbner basis of $IK(u)[x \setminus u]$, and let $h := lcm(LC(g_1), ..., LC(g_s)) \in K[u]$, then

$$IK(u)[x \setminus u] \cap K[x] = I : \langle h^{\infty} \rangle$$
,

and this ideal is equidimensional of dimension $\dim(I)$.

²It is maximal such that $I \cap K[u] = \langle 0 \rangle$.

(3) Let $IK(u)[x \setminus u] = Q_1 \cap \cdots \cap Q_s$ be an irredundant primary decomposition, then also $IK(u)[x \setminus u] \cap K[x] = (Q_1 \cap K[x]) \cap \cdots \cap (Q_s \cap K[x])$ is an irredundant primary decomposition.

Finally we explain how to compute the radical.

Proposition 2.5. Let $I \subset K[x_1,...,x_n]$ be a zero-dimensional ideal and $I \cap K[x_i] = \langle f_i \rangle$ for i = 1,...,n. Moreover, let g_i be the squarefree part of f_i , then $\sqrt{I} = I + \langle g_1,...,g_n \rangle$.

The higher dimensional case can be reduced similarly to the primary decomposition to the zero-dimensional case.

3. LECTURE: INVARIANTS

The computation of the Hilbert function will be discussed and explained. Let *K* be a field.

Definition 3.1. Let $A = \bigoplus_{v \geq 0} A_v$ be a Noetherian graded K-algebra, and let $M = \bigoplus_{v \in \mathbb{Z}} M_v$ be a finitely generated graded A-module. The Hilbert function $H_M : \mathbb{Z} \to \mathbb{Z}$ of M is defined by

$$H_M(n) := \dim_K(M_n)$$

and the Hilbert-Poincaré series HP_M of M is defined by

$$HP_M(t) := \sum_{v \in \mathbb{Z}} H_M(v) \cdot t^v \in \mathbb{Z}[[t]][t^{-1}].$$

Theorem 3.2. Let $A = \bigoplus_{v \geq 0} A_v$ be a graded K-algebra, and assume that A is generated, as K-algebra, by $x_1, \ldots, x_r \in A_1$. Then, for any finitely generated (positively) graded A-module $M = \bigoplus_{v \geq 0} M_v$,

$$HP_M(t) = \frac{Q(t)}{(1-t)^r}$$
 for some $Q(t) \in \mathbb{Z}[t]$.

Note that SINGULAR has a command which computes the numerator Q(t) for the Hilbert–Poincaré series:

SINGULAR Example 10.

ring A=0,(t,x,y,z),dp;
ideal I=x5y2,x3,y3,xy4,xy7;
intvec v = hilb(std(I),1);
v;
//-> 1,0,0,-2,0,0,1,0
We obtain
$$O(t) = t^6 - 2t^3 + 1$$
.

The latter output has to be interpreted as follows: if $\mathbf{v} = (v_0, \dots, v_d, 0)$ then $Q(t) = \sum_{i=0}^{d} v_i t^i$.

Theorem 3.3. Let > be any monomial ordering on $K[x] := K[x_1, ..., x_r]$, and let $I \subset K[x]$ be a homogeneous ideal. Then

$$HP_{K[x]/I}(t) = HP_{K[x]/L(I)}(t)$$
,

where L(I) is the leading ideal of I with respect to >.

Examples how to compute the Hilbert polynomial, the Hilbert–Samuel function, the degree respectively and the multiplicity and the dimension of an ideal can be found in [7]. As above all computations are reduced to compute the corresponding invariants for the leading ideal.

4. LECTURE: HOMOLOGICAL ALGEBRA

Here we will show different approaches how to test Cohen–Macaulayness using SIN-GULAR. More details about the underlying theory can be found in [7].

SINGULAR Example 11 (first test for Cohen–Macaulayness).

Let (A, \mathfrak{m}) be a local ring, $\mathfrak{m} = \langle x_1, \ldots, x_n \rangle$. Let M be an A-module given by a presentation $A^{\ell} \to A^s \to M \to 0$. To check whether M is Cohen-Macaulay we use that the equality

$$\dim(A/\operatorname{Ann}(M)) = \dim(M) = \operatorname{depth}(M)$$
$$= n - \sup\{i \mid H_i(x_1, \dots, x_n, M) \neq 0\}.$$

is necessary and sufficient for M to be Cohen–Macaulay. The following procedure computes $depth(\mathfrak{m},M)$, where $\mathfrak{m}=\langle x_1,\ldots,x_n\rangle\subset A=K[x_1,\ldots,x_n]_>$ and M is a finitely generated A-module with $\mathfrak{m}M\neq M$.

The following procedures use the procedures Koszul Homology from homolog.lib and Ann from primdec.lib to compute the Koszul Homology $H_i(x_1,...,x_n,M)$ and the annihilator Ann(M). They have to be loaded first.

```
LIB "homolog.lib";
proc depth(module M)
{
   ideal m=maxideal(1);
   int n=size(m);
   int i;
   while(i<n)
   {
      i++;
      if(size(KoszulHomology(m,M,i))==0){return(n-i+1);}
   }
   return(0);
}</pre>
```

Now the test for Cohen–Macaulayness is easy.

```
LIB "primdec.lib";
proc CohenMacaulayTest(module M)
{
  return(depth(M)==dim(std(Ann(M))));
}
```

The procedure returns 1 if *M* is Cohen–Macaulay and 0 if not.

As an application, we check that a complete intersection is Cohen–Macaulay and that $K[x,y,z]_{\langle x,y,z\rangle}/\langle xz,yz,z^2\rangle$ is not Cohen–Macaulay.

```
ring R=0,(x,y,z),ds;
ideal I=xz,yz,z2;
module M=I*freemodule(1);
CohenMacaulayTest(M);
//-> 0

I=x2+y2,z7;
M=I*freemodule(1);
CohenMacaulayTest(M);
//-> 1
```

SINGULAR Example 12 (second test for Cohen–Macaulayness).

Let $A = K[x_1, ..., x_n]_{\langle x_1, ..., x_n \rangle}/I$. Using Noether normalization, we may assume that $A \supset K[x_{s+1}, ..., x_n]_{\langle x_{s+1}, ..., x_n \rangle} =: B$ is finite. We choose a monomial basis $m_1, ..., m_r \in K[x_1, ..., x_s]$ of $A|_{x_{s+1} = \cdots = x_n = 0}$.

Then $m_1, ..., m_r$ is a minimal system of generators of A as B-module. A is Cohen-Macaulay if and only if A is a free B-module, that is, there are no B-relations between $m_1, ..., m_r$, in other words, $syz_A(m_1, ..., m_r) \cap B^r = \langle 0 \rangle$. This test can be implemented in SINGULAR as follows:

```
proc isCohenMacaulay(ideal I)
{
   def A
           = basering;
           = noetherNormal(I);
   list L
  map phi = A,L[1];
   Ι
           = phi(I);
           = nvars(basering)-size(L[2]);
   int s
   execute("ring B=("+charstr(A)+"),x(1..s),ds;");
   ideal m = maxideal(1);
  map psi = A, m;
   ideal J = std(psi(I));
   ideal K = kbase(J);
   setring A;
   execute("
     ring C=("+charstr(A)+"),("+varstr(A)+"),(dp(s),ds);");
```

```
ideal I = imap(A,I);
  qring D = std(I);
  ideal K = fetch(B,K);
  module N = std(syz(K));
  intvec v = leadexp(N[size(N)]);
  int i=1;
  while((i<s)&&(v[i]==0)){i++;}
  setring A;
  if(!v[i]){return(0);}
  return(1);
}</pre>
```

As the above procedure uses noetherNormal from algebra.lib, we first have to load this library.

```
LIB"algebra.lib";
ring r=0,(x,y,z),ds;
ideal I=xz,yz;
isCohenMacaulay(I);
//-> 0

I=x2-y3;
isCohenMacaulay(I);
//-> 1
```

SINGULAR Example 13 (3rd test for Cohen–Macaulayness).

We use the Auslander–Buchsbaum formula to compute the depth of M and then check if $\operatorname{depth}(M) = \dim(M) = \dim(A/\operatorname{Ann}(M))$.

We assume that $A = K[x_1, \dots, x_n]_{\langle x_1, \dots, x_n \rangle}/I$ and compute a minimal free resolution. Then $\operatorname{depth}(A) = n - \operatorname{pd}_{K[x_1, \dots, x_n]_{\langle x_1, \dots, x_n \rangle}}(A)$. If M is a finitely generated A-module of finite projective dimension, then we compute a minimal free resolution of M and obtain $\operatorname{depth}(M) = \operatorname{depth}(A) - \operatorname{pd}_A(M)$.

Now it is easy to give another test for Cohen–Macaulayness.

```
proc isCohenMacaulay1(ideal I)
```

```
{
  int de=nvars(basering)-projdim(I*freemodule(1));
  int di=dim(std(I));
  return(de==di);
}
ring R=0, (x,y,z), ds;
ideal I=xz,yz;
isCohenMacaulay1(I);
//-> 0
I=x2-y3;
isCohenMacaulay1(I);
//-> 1
I=xz,yz,xy;
isCohenMacaulay1(I);
//-> 1
kill R;
The following procedure checks whether the depth of M is equal to d. It uses the proce-
dure Ann from primdec.lib.
proc CohenMacaulayTest1(module M, int d)
{
  return((d-projdim(M))==dim(std(Ann(M))));
}
LIB"primdec.lib";
ring R=0, (x,y,z), ds;
ideal I=xz,yz;
module M=I*freemodule(1);
CohenMacaulayTest1(M,3);
//-> 0
I=x2+y2,z7;
M=I*freemodule(1);
CohenMacaulayTest1(M,3);
//-> 1
```

REFERENCES

- [1] Cox, D.; Little, J.; O'Shea, D.: Ideals, Varieties and Algorithms. Springer (1992).
- [2] Decker, W.; Lossen, Chr.: Computing in Algebraic Geometry; A quick start using SINGULAR. Springer, (2006).
- [3] Decker, W.; Greuel, G.-M.; Pfister, P.: Primary Decomposition: Algorithms and Comparisons. In: Algorithmic Algebra and Number Theory, Springer, 187–220 (1998).

- [4] Decker, W.; Greuel, G.-M.; de Jong, T.; Pfister, G.: The Normalization: a new Algorithm, Implementation and Comparisons. In: Proceedings EUROCONFERENCE Computational Methods for Representations of Groups and Algebras (1.4. 5.4.1997), Birkhäuser, 177–185 (1999).
- [5] Dickenstein, A.; Emiris, I.Z.: Solving Polynomial Equations; Foundations, Algorithms, and Applications. Algorithms and Computations in Mathematics, Vol. 41, Springer, (2005).
- [6] Eisenbud, D.; Grayson, D.; Stillman, M., Sturmfels, B.: Computations in Algebraic Geometry with Macaulay2. Springer, (2001).
- [7] Greuel, G.-M.; Pfister G.: A Singular Introduction to Commutative Algebra. Springer 2008.
- [8] Greuel, G.-M.; Pfister, G.: SINGULAR and Applications, Jahresbericht der DMV 108 (4), 167-196, (2006).
- [9] Kreuzer, M.; Robbiano, L.: Computational Commutative Algebra 1. Springer (2000).
- [10] Vasconcelos, W.V.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer (1998).

Computer Algebra Systems

- [11] ASIR (Noro, M.; Shimoyama, T.; Takeshima, T.): http://www.asir.org/.
- [12] CoCoA (Robbiano, L.): A System for Computation in Algebraic Geometry and Commutative Algebra. Available from cocoa.dima.unige.it/cocoa
- [13] Macaulay 2 (Grayson, D.; Stillman, M.): A Computer Software System Designed to Support Research in Commutative Algebra and Algebraic Geometry. Available from http://math.uiuc.edu/Macaulay2.
- [14] SINGULAR (Greuel, G.-M.; Pfister, G.; Schönemann, H.): A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern, free software under the GNU General Public Licence (1990-2007). http://www.singular.uni-kl.de.