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St. John’s, October 04-08, 2010

1. STANDARD BASES AND SINGULAR
SINGULAR

SINGULAR is available, free of charge, as a binary programme for nmsingon hard-
ware and software platforms. Release versiona®EBLAR can be downloaded through
ftp from our FTP site

ftp://www.mathematik.uni-k1.de/pub/Math/Singular/,
or, using your favourite WWW browser, from
http://www.singular.uni-kl.de/download.html

The basis of BIGULAR is multivariate polynomial factorization and standarddsas
computations.

We explain first of all the notion of a Grobner basis (withpest to any ordering)
as the basis for computations in localizations of factgsiof polynomial rings. The
presentation of a polynomial as a linear combination of nmaiads is unique only up to an
order of the summands, due to the commutativity of the amldiVWe can make this order
unique by choosing a total ordering on the set of monomiats. férther applications
it is necessary, however, that the ordering is compatibth thie semigroup structure on
Mon.

We give here only the important definitions, theorems ananges. Proofs can be
found in [7]. The SNGULAR examples can be found on the CD in [7].

Definition 1.1. Amonomial orderingr semigroup orderings a total (or linear) ordering
> on the set of monomialdon, = {x% | a € N"} in n variables satisfying
X > P = X% > XVKP

for all a,B,y € N". We say also> is amonomial ordering oi\[xy, ...,Xn], A any ring,
meaning that> is a monomial ordering oMon,.
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Definition 1.2. Let > be a fixed monomial ordering. Writed K[x], f # 0, in a unique
way as a sum of non—zero terms

f=agx® +agx® +-+ax’, x*>xF>...>x,
and &, ag, ...,ay € K. We define:
(1) LM(f) := teadmonom(f):= x9, theleading monomiabf f,

(2) LE(f) := leadezp (f):= a, theleading exponeraf f,
(3) LT(f) := tead (f):= ayX?, theleading termor headof f,
(4) LC(f) := leadcoef (f):= ag, theleading coefficienof f
(5) tail (f):=f— lead(f)=agxP +---+ayx, thetail.

(6) ecart(f) :=deq f) —deg LM(f)).

SINGULAR Example 1.

ring A = 0,(x,y,2),1p;
poly f = y4z3+2x2y2z2+3x5+4z4+5y2;

f; //display f in a lex-ordered way
//=> 3x5+2x2y2z2+y4z3+5y2+4z4

leadmonom(£f) ; //leading monomial
//-> x5

leadexp(f); //leading exponent
//-> 5,0,0

lead(f); //leading term

//-> 3x5

leadcoef (f); //leading coefficient
//-> 3

f - lead(f); //tail

//=> 2x2y2z2+y4z3+5y2+4z4

Definition 1.3. Let > be a monomial ordering ofix” | o € N"}.

(1) > is called aglobal orderingf x® > 1 for all a # (0,...,0),
(2) > is called alocal orderingf x* < 1 for all a # (0,...,0),
(3) > is called amixed orderingf it is neither global nor local.

Lemma 1.4.Let > be a monomial ordering, then the following conditions araieglent:
(1) > is a well-ordering.
(2) X, >1fori=1,...,n.
(3) x* > 1forall a # (0,...,0), thatis,> is global.
In the following examples we fix an enumerativy. .., x, of the variables, any other

enumeration leads to a different ordering.
GLOBAL ORDERINGS

(1) Lexicographical ordering>|, (also denoted by lex):

X9 >|px’3: <= Jd1<i<n:a1=p,...,0i 1=06_1,0 > 5.
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(i) Degree reverse lexicographical ordering;, (denoted by degreviex):
X0 >gpxf = degd® > degd
or : (degx” =degs® and31<i<n:
on=Bn,...,qdi+1=PBit1, O < Bi),
where deg? = ai;+---+ ap.
LocAL ORDERINGS
(i) Negative lexicographical orderings:
X >sxXP = J1<i<nar=Bi....01_1=Bi_1,0 < Bi.
(i) Negative degree reverse lexicographical ordering
XY >gexB = degx® < degx®, where deg® = ay+ -+ an,
or : (deg® =dege® and31<i<n:
On = PBn, ..., 0ix1=Bir1, 0 < B).
Let > be a monomial ordering on the set of monomials Man..,x,) = {x? | a €

N"}, andK[x] = K[x1, ..., Xn] the polynomial ring im variables over a fielt&k. Then the
leading monomial function LM has the following properties polynomialsf,g € K[x] \ {0}:

(1) LM(gf) = LM(g)LM(f).
(2) LM(g+ f) <max{LM(g),LM(f)} with equality if and only if the leading terms
of f andg do not cancel.

In particular, it follows that
S, i={ue K[\ {0} [ LM(u) =1}
is a multiplicatively closed set.

Definition 1.5. For any monomial ordering- on Mon(Xy, ..., Xn), we define

f
S
the localization of Kx] with respect to S and call K[x|-. thering associated t&[x] and

>.

Note thatS. = K* if and only if > is global andS. = K[x] \ (x1,...,Xa) if and only if >
is local.

f.ue K[x,LM(u) = 1} ,

Definition 1.6. Let > be any monomial ordering:
(1) For f € K[x]> choose ue K[x] such that LTu) = 1 and ufe K[x]. We define

and tail(f) = f — LT(f).
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(2) For any subset G- K[x]~. define the ideal
L>(G) :=L(G) := (LM(g) | g € G\ {0})k[x -
L(G) C K[X| is called theleading ideabf G.

Definition 1.7. Let | € R=K][x]- be an ideal.
(1) Afinite set GC R is called astandard basief | if

Gcl,and 1) =L(G).

That is, G is a standard basis, if the leading monomials ofdlements of G
generate the leading ideal of I, or, in other words, if for ahy | \ {0} there
exists a g= G satisfying LMQg) | LM(f).

(2) If > is global, a standard basis is also calledzadbner basis

(3) If we just say that G is a standard basis, we mean that G is alstaibasis of the
ideal (G)r generated by G.

Standard bases can be characterized using the notion obtheahform. We need the
following definitions:

Definition 1.8. Let f,g € R\ {0} with LM(f) = x% and LM(g) = x?, respectively. Set
y.= ICm(avﬁ) = (ma)<al7B1)7 K max(al’th))

and letlem(x?,x8) := x¥ be the least common multiple df and . We define the-s
polynomial(spoly, for short) of f and g to be

o)
spoly(f,g) :=xV"9f — —— 2 .xV"Bq.

If LM(g) divides LM f), say LMg) = xB, LM(f) = x?, then the s—polynomial is partic-
ularly simple,

LC(f) 4
spoly(f,g)=f— —2.x3Fg,
poly(f,g) Clo) g

and LM(spoly(f,g)) < LM(f).
Definition 1.9. Let¥ denote the set of all finite lists G R= K[x]..
NF:Rx¥9 — R, (f,G)— NF(f|G),
is called a normal form on R if, for all @ ¢,
(0) NF(O|G) =0,
and, for all fe R and Ge ¥,
(1) NF(f | G) #0 = LM(NF(f | G)) £ L(G).

(2) G ={qs,...,0s}, then f has atandard representatiaith respect to NF— | G),
that is, there exists a unit@ R* such that

S
uf —=NF(f |G) = Zlaagi, aeR, s>0,
i=

satisfying LM>?_,a;0i) > LM(&g;) for all i such that ag; # 0.
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The existence of a normal form is given by the following altyon:

Algorithm 1.10. NF(f | G)
Let> be any monomial ordering.
Input: € K[x], G afinite list in Kx]
Output: h € K[x] a polynomial normal form of f with respect to G.
e h:=1;
o T:=G;
e whilelh#0and T,:={ge T |LM(g) | LM(h)} # 0)
choose ¢ Ty, with ecar{g) minimal;
if (ecart(g) > ecarth))
T:=Tu{h};
h:= spolyh,g);
e return h;

Theorem 1.11.Let | C R be an ideal and G- {g,...,0s} C |. Then the following are
equivalent:

(1) G is a standard basis of I.
(2) NF(f |G) =0ifandonlyif fel.

We will explain now how to use standard bases to solve probieralgebra.

Ideal membership

Problem:Givenf, fy,..., fx € K[x], and letl = (fy,..., fx)r. We wish to decide whether
f €1, or not.

Solution:We choose any monomial orderingsuch thaK x|~ = Rand compute a stan-
dard basisG = {0i,...,0s} of | with respect to>. f €1 if and only if NF(f | G) =0.

SINGULAR Example 2.

ring A = 0,(x,y),dp;
ideal I x10+x9y2,y8-x2y7;
ideal J = std(I);
poly £ x2y7+yl4;
reduce(f,J,1); //3rd parameter 1 avoids tail reduction
//=> —xyl12+x2y7 //f is not in I
f = xyl3+yl2;
reduce(f,J,1);
//=> 0 //f is in I

Intersection with Subrings (Elimination of variables)
Problem: Given fy,..., fx € K[X| = K[Xg,..., %], | = (f1,..., fk)K[X], we should like to
find generators of the ideal

"= 1NK[Xst1,...,Xn), S<N.
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Elements of the idedl are said to be obtained froff, ..., fx by eliminating X,...,Xs.
The following lemma is the basis for solving the eliminatfmoblem.

Lemma 1.12. Let > be an elimination ordering for . ..,Xs on the set of monomials
Mon(Xg,...,Xn), and let IC K[xg,...,X:]~ be anideal. If S={0s,...,0«} is a standard
basis of I, then

S :={ge S|LM(g) € K[Xst1,.--,%]}
is a standard basis of t=1 NK[Xs:1,...,X]<. In particular, S generates the ideal.l

SINGULAR Example 3.

ring A =0, (t,x,y,2),dp;
ideal I=t2+x2+y2+z2,t2+2x2-xy-z2,t+y3-2z3;

eliminate(I,t);
//=> _[1]=x2-xy-y2-2z2 _[2]=y6-2y3z3+26+2x2-xy-2z2

Alternatively choose a product ordering:

ring A1=0, (t,x,y,2),(dp(1),dp(3));

ideal I=imap(A,I);

ideal J=std(I);

J;

//=> J[1]=x2-xy-y2-22z2 J[2]=y6-2y3z3+z6+2x2-xy-2z2
//-> J[3]=t+y3-z3

Radical Membership

Problem Let fq,..., fy € K[x]~, > a monomial ordering on Mdpmj, . ..,xn) and

I = (f1,..., fiykx.- Given somef € K[X]. we want to decide whethelr € V1. The
following lemma, which is sometimes call&hbinowich’s trick is the basis for solving
this problem?

Lemma 1.13.Let A be aring, IC A anideal and fe A. Then
fevii e:ilel=(1-tf)uy
where t is an additional new variable.

SINGULAR Example 4.

ring A =0, (x,y,z),dp;
ideal I=x5,xy3,y7,z3+xyz;
poly f =x+y+z;

ring B =0, (t,x,y,z),dp; //need t for radical test
ideal I=imap(A,I);
poly f =imap(A,f);

Iwe can even compute the full radicgl, but this is a much harder computation.
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I=1,1-tx*f;

std(I);

//-> _[1]1=1 //f is in the radical
LIB"primdec.lib"; //just to see, we compute the radical
setring A;

radical(I);

//-> _[1]=z  _[2]=y _[3]=x

Intersection of Ideals

Problem:Given fy,..., fy, h,...,h € K[x] and> a monomial ordering. Ldy =
(f1,..., iy K[x]> andlz = (hy,...,h)K[X]~. We wish to find generators forN1».

Consider the ideal := (tfy,...,tfy, (1—t)hy,..., (1 —t)h;) (K[X]>)[t].
Lemma 1.14. With the above notationsy M1, = INK[X]~.

SINGULAR Example 5.
ring A=0, (x,y,z),dp;

ideal Il1=x,y;

ideal I2=y2,z;

intersect(I1,I2); //the built-in SINGULAR command
//-> _[1]=y2 _[2]=yz _[3]=xz

ring B=0, (t,x,y,2z),dp; //the way described above
ideal Il=imap(A,Il);

ideal I2=imap(A,I2);

ideal J=t*I1+(1-t)*I2;

eliminate(J,t);

//=> _[1l=yz _[2]=xz  _[3]=y2

Quotient of Ideals
Problem:LetI; andl, C K[x]~. We want to compute
l1:l={geK[x> |glaCli}.
Since, obviouslyl; : (hy,....h) =N_;(I1: (h})), we can computé; : (h;) for eachi.
The next lemma shows a way to compue (h;).

Lemma 1.15.Let | C K[X]> be anideal, and let k K[x]~, h# 0. Moreover, let N (h) =
<gl'h7"'7gS'h>' Then I <h> = <gla'-'7gS>K[X]>'

SINGULAR Example 6.

ring A=0, (x,y,z),dp;
ideal Il1=x,y;
ideal I2=y2,z;



quotient(I1,I2); //the built-in SINGULAR command
//=> _[1]=y _[2]=x

Kernel of a Ring Map
Let¢ : Ry := (K[X]>,)/l — (K]y]>,)/J =: Ra be aring map defined by polynomigi$x;) =
fi € Kly| =K]y1,...,ym| fori =1,...,n (and assume that the monomial orderings satisfy
1>, LM(fi)if 1 >1%.
DefineJp := JNK]y], andlg := I NK[X]. Theng is induced by
¢ :K[X/lo— K[¥l/Jo, xi— fi,

and we have a commutative diagram

K[X/lo — Ky]/J0

o,

Ry R>.

Problem:Let|,J and¢ be as above. Compute generators for(iger

Solution: Assume thafy = (0s, . - .,gs>KM andlg = (hg, .. .,hQKm.
SetH := (hy,...,h,01,...,9s,X1— f1,...,%— fn) C K[X,y], and computél’ := H NK[X]
by eliminatingys, .. .,ym fromH. ThenH’ generates Kép) by the following lemma.

Lemma 1.16. With the above notation&er(¢) = Ker(¢)R; and
Ker($) = (lo+(91,---,9s: X1 — f1,...,Xn — fn)kxy N K[X]) modlo.
In particular, if > is global, therKer(¢) = Ker(¢).

SINGULAR Example 7.

ring A=0, (x,y,z),dp;
ring B=0, (a,b),dp;
map phi=A,a2,ab,b2;

ideal zero; //compute the preimage of 0
setring A;
preimage (B, phi,zero) ; //the built-in SINGULAR command

//-> _[1]=y2-xz

ring C=0,(x,y,z,a,b), dp; //the method described above
ideal H=x-a2, y-ab, z-b2;

eliminate(H,ab);

//=> _[1]=y2-xz



2. LECTURE POLYNOMIAL SOLVING AND PRIMARY DECOMPOSITION

Solvability of Polynomial Equations

Problem: Given fq,..., fx € K[x1,...,X], we want to assure whether the system of
polynomial equations

fix)=---=fk(X) =0
has a solution ik, whereK is the algebraic closure ¢.
Let | = (f1,..., fiykx, then the question is whether the algebraic\s€t) C K" is
empty or not.

Solution: By Hilbert’s NullstellensatzV/ (1) = 0 if and only if 1€ 1. We compute a
Grobner basi& of | with respect to any global ordering on Moa, . . ., X,) and normalize
it (that is, divide everyg € G by LC(g)). Since 1€ | if and only if 1€ L(l), we have
V(l)=0ifand only if 1 is an element of a normalized Grobner basis Of course, we
can avoid normalizing, which is expensive in rings with paegers. Since & | if and
only if G contains a non—zero constant polynomial, we have only tk fooan element
of degree 0 irG.

SINGULAR Example 8.

ring A=0, (x,y,z),1p;
ideal I=x2+y+z-1,

x+y2+z-1,
x+y+z2-1;
ideal J=groebner(I); //the lexicographical Groebner basis
g3
//=> J[1]=26-4z4+423-22 J[2]=2yz2+z4-z2
//=> J[3]=y2-y-z2+z J[4]=x+y+z2-1

We use the multivariate solver based on triangular sets.

LIB"solve.lib";
list sl=solve(I,6);
//-> // name of new current ring: AC

si;

//=> [1]: [2]: [3]: (4] : [5]:
//=> [1]: [1]: [1]: [1]: [1]:
//-> 0.414214 0 -2.414214 1 0
//=> [2]: [2]: [2]: [2]: [2]:
//-> 0.414214 0 -2.414214 0 1
//=> [31: [3]: [3]: [3]: [3]:
//-> 0.414214 1 -2.414214 0 0
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If we want to compute the zeros with multiplicities then we dsas a third parameter for
the command:

setring A;
list s2=solve(I,6,1);
s2;
//=> [1]: [2]:
//=> (1] : [1]:
//=> [1]: [1]:
//=> [1]: [1]:
//=> -2.414214 0
//=> [2]: [2]:
//=> -2.414214 1
//=> [31: [3]:
//=> -2.414214 0
//=> [2]: [2]:
//=> (1] : [1]:
//=> 0.414214 1
//=> [2]: [2]:
//=> 0.414214 0
//=> [31: [3]:
//=> 0.414214 0
//=> (2] : [3]:
//—> 1 [1]:
//=> 0
//=> [2]:
//=> 0
//=> [3]:
//=> 1
//=> [2]:
//=> 2

The output has to be interpreted as follows: there are twaszef multiplicity 1 and
three zeros(Q, 1,0), (1,0,0), (0,0,1)) of multiplicity 2.

Definition 2.1.

(1) A maximal ideal MC K[x1,...,Xn] is called ingeneral positionvith respect to the
lexicographical ordering with x> -+ > X, if there exist g, ..., gn € K[Xy] with
M = (X1+091(%n),- -, Xn—1+Gn-1(%n), Gn(Xn))-

(2) A zero—dimensional ideal & K[xy,...,Xn] is called ingeneral positiorwith re-
spect to the lexicographical ordering with x --- > X,, if all associated primes
P1,...,R are in general position and ifiP1 K [x,] # P; N K[xn] for i # .

Proposition 2.2. Let K be a field of characteristi@, and let | C K[x], Xx= (X1, ...,%n), be

a zero—dimensional ideal. Then there exists a non—emptigkZapen subset & K1
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such that for all &= (ay,...,an-1) € U, the coordinate changg, : K[x] — K[x] defined
by ¢a(xi) = x ifi <n, and

n-1
Pa(Xn) =Xn+ ; aX

has the property thap,(1) is in general position with respect to the lexicographical o
dering defined byx> --- > xn.

Proposition 2.3. Let | C K[xy,...,Xn| be a zero—dimensional ideal. L&) = NK|[xy],
g=0;*...0s°, g monic and prime andig# gj for i # j. Then

(D) 1 =Nall,g")-
If I is in general position with respect to the lexicograpddiordering with > --- > X,
then

() (1,g") is a primary ideal for all i.
SINGULAR Example 9 (zero—dim primary decomposition)
We give an example for a zero-dimensional primary decortiposi

option(redSB);
ring R=0, (x,y),1p;
ideal I=(y2-1)"2,x2-(y+1)"3;

The ideall is not in general position with respect 1p, since the minimal associated
prime (x? — 8,y — 1) is not.

map phi=R,x,x+y; //we choose a generic coordinate change
map psi=R,x,-x+y; //and the inverse map

I=std(phi(I));

I.

//-> 1[1]=y7-y6-19y5-13y4+99y3+221y2+175y+49

//-> 1[2]1=112xy+112x-27y6+64y5+431y4-264y3-2277y2-2520y-847
//-> 1[3]=56x2+65y6-159y5-1014y4+662y3+5505y2+6153y+2100
factorize(I[1]);

//=> [1]:

//=> _[11=1

//=> _[2]=y2-2y-7

//=> _[3]=y+1

//=> [2]:

//-> 1,2,3

ideal Q1l=std(I, (y2-2y-7)~2); //the candidates for the
//primary ideals

ideal Q2=std(I, (y+1)°3); //in general position

Q1; Q2;

//-> Q1[1]1=y4-4y3-10y2+28y+49  Q2[1]=y3+3y2+3y+1
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//=> Q1[2]=56x+y3-9y2+63y-7 Q2 [2]=2xy+2x+y2+2y+1
Q2[3]=x2

factorize(Q1[1]); //primary and general position test
//for Q1

//=> [1]:

//=> _[1]=1

//=> _[2]=y2-2y-7

//=> [2]:

//=> 1,2

factorize(Q2([1]); //primary and general position test
//for Q2

//=> [1]:

//=> _[1]=1

//=> _[2]=y+1

//=> [2]:

//=> 1,3

Both ideals are primary and in general position.

Ql=std(psi(Q1)); //the inverse coordinate change
Q2=std(psi(Q2)); //the result
Q1; Q2;

//=> Q1[1]=y2-2y+1 Q2[1]=y2+2y+1
//-> Q1[2]=x2-12y+4  Q2[2]=x2

We obtain that is the intersection of the primary ided andQ» with associated prime

ideals(y — 1,x°— 8) and(y+ 1,X).

The following proposition reduces the higher dimensiorsalecto the zero-dimensional

case:

Proposition 2.4. Let | € K[x] be an ideal and «C X = {Xy,...,X} be a maximal inde-

pendent set of variablésvith respect to .
(1) IK(u)[x~u] C K(u)[x~ u] is a zero—dimensional ideal.

(2) Let S={g1,...,0s} C | C K[x] be a Gibbner basis of IKu)[x~ u], and let h:=

lem(LC(g1),...,LC(gs)) € K[u], then
IK(u)[x~uNK[x]=1:(h*),

and this ideal is equidimensional of dimensgim(l).

ZHSnmﬂmMthmmmekzmy
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(3) Let IK(u)[x~u] =Q1N---NQs be an irredundant primary decomposition, then
also IK(u)[x~uNKI[x = (Q1NK[x])N---N(QsNKI[X]) is an irredundant pri-
mary decomposition.

Finally we explain how to compute the radical.

Proposition 2.5. Let | C K[xg,...,X,] be a zero—dimensional ideal anchK x| = (f;)
fori =1,...,n. Moreover, let gbe the squarefree part of, theny/1 =14 (gy,...,0gn).

The higher dimensional case can be reduced similarly toriiheapy decomposition to
the zero-dimensional case.

3. LECTURE INVARIANTS

The computation of the Hilbert function will be discussed anplained. LeK be a field.

Definition 3.1. Let A= @~ oAy be a Noetherian graded K-algebra, and letMd,, ., My
be a finitely generated graded A—module. Hilbert functionHy : Z — Z of M is de-
fined by
HM(n) = dimK(Mn) s
and theHilbert—Poincaré seriddPy of M is defined by
HPu(t) == Y Hw(v)-t’ e Z[t])[t ™.

VEZ

Theorem 3.2.Let A= P, oAy be a graded K-algebra, and assume that A is generated,
as K—algebra, by x...,% € A;. Then, for any finitely generated (positively) graded A—
module M= @, ~oMy,

Qt)
(1=t

Note that SNGULAR has a command which computes the numer&(r) for the
Hilbert—Poincaré series:

HPw (t) = for some Qt) € Z[t].

SINGULAR Example 10.

ring A=0, (t,x,y,z),dp;
ideal I=x5y2,x3,y3,xy4,xy7;
intvec v = hilb(std(I),1);
v

//->1,0,0,-2,0,0,1,0

We obtainQ(t) =t® — 2t3 + 1.

The latter output has to be interpreted as follows:v i (vo,...,Vy,0) then Q(t) =
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Theorem 3.3.Let > be any monomial ordering on[K := K|xg,...,%|, and let |C K[X]
be a homogeneous ideal. Then

HPy /1 (t) = HPypg (1)
where L(1) is the leading ideal of | with respect te.

Examples how to compute the Hilbert polynomial, the Hilb&amuel function, the de-
gree respectively and the multiplicity and the dimensioamideal can be found in [7].
As above all computations are reduced to compute the camelspg invariants for the
leading ideal.

4. LECTURE HOMOLOGICAL ALGEBRA

Here we will show different approaches how to test Cohen-adkyness usingiS-
GULAR. More details about the underlying theory can be found in [7]

SINGULAR Example 11 (first test for Cohen—Macaulayness)

Let(A,m) be alocal ringm = (X1, ...,%n). Let M be an A—-module given by a presentation
A’ — AS — M — 0. To check whether M is Cohen—Macaulay we use that the egualit

dim(A/Ann(M)) = dim(M) = depthM)
=n—sup(i | Hi(Xg,..., %, M) #0}.

is necessary and sufficient for M to be Cohen—Macaulay. Tlh@niog procedure com-
putesdepti{m,M), wherem = (x1,...,Xn) C A=K][X1,...,X]> and M is a finitely gen-
erated A—-module witmM # M.

The following procedures use the procedures Koszul Honyodfiagn homolog.1ib and
Ann from primdec.1lib to compute the Koszul Homology;(x1,...,X,,M) and the an-
nihilator Ann(M). They have to be loaded first.

LIB "homolog.lib";
proc depth(module M)
{
ideal m=maxideal(l);
int n=size(m);
int 1i;
while(i<n)
{
i++;
if (size(KoszulHomology(m,M,i))==0){return(n-i+1);}
}

return(0) ;

}
Now the test for Cohen—Macaulayness is easy.
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LIB "primdec.lib";
proc CohenMacaulayTest (module M)

{
return(depth(M)==dim(std(Ann(M)))) ;
}

The procedure returns 1M is Cohen—Macaulay and O if not.

As an application, we check that a complete intersectioroise@—Macaulay and that
KIXY,Z xy.2/ (X2 YZ, 7%) is not Cohen—Macaulay.

ring R=0, (x,y,2),ds;
ideal I=xz,yz,z2;

module M=I*freemodule(1l);
CohenMacaulayTest (M) ;
//=> 0

I=x2+y2,27;
M=I*freemodule(1);
CohenMacaulayTest (M) ;
//-> 1

SINGULAR Example 12 (second test for Cohen—Macaulayness)

Let A=K[Xy,...,Xn](x,,...x)/l- Using Noether normalization, we may assume that
AD K[Xst1,- -5 Xn] (xg.1,...%0) =- B is finite. We choose a monomial basig, m.,m; €
K[X1,...,Xs of A e =X O

Then m,...,m, is a minimal system of generators of A as B—-module. A is Cohen—
Macaulay if and only if A is a free B-module, that is, there aceB—relations between
my,...,Mmy, in other words, syZmy,...,m,)NB" = (0). This test can be implemented in
SINGULAR as follows:

proc isCohenMacaulay(ideal I)

{
def A = basering;
list L = noetherNormal(I);
map phi = A,L[1];
I = phi(I);
int s = nvars(basering)-size(L[2]);

execute("ring B=("+charstr(A)+"),x(1..s),ds;");

ideal m = maxideal(l);
map psi = A,m;

ideal J = std(psi(I));
ideal K = kbase(J);
setring A;

execute ("

ring C=("+charstr(A)+"), ("+varstr(A)+"),(dp(s),ds);");
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ideal I = imap(A,I);

gring D = std(I);

ideal K = fetch(B,K);

module N = std(syz(K));

intvec v = leadexp(N[size(N)]);
int i=1;
while((i<s)&&(v[i]==0)){i++;}
setring A;
if('v[i]){return(0);}
return(1);

3

As the above procedure usesetherNormal from algebra.lib, we first have to load
this library.

LIB"algebra.lib";
ring r=0, (x,y,2z),ds;
ideal I=xz,yz;
isCohenMacaulay (I);
//=> 0

I=x2-y3;
isCohenMacaulay (1) ;
//=> 1

SINGULAR Example 13 (3rd test for Cohen—Macaulayness)
We use the Auslander—Buchsbaum formula to compute the deptrand then check if
depth(M) = dim(M) = dim(A/ Ann(M)).

We assume that A K[xy,...,Xn](x,,..x, /| @nd compute a minimal free resolution.
ThendepthA) = n— pq<[xl7---7><n]<x1,_..,xn> (A). If M is a finitely generated A—module of fi-
nite projective dimension, then we compute a minimal freeltgion of M and obtain
deptiM) = depti{A) — pda(M).

proc projdim(module M)

{
list 1l=mres(M,0); //compute the resolution
int 1i;
while(i<size (1))
{
i++;
if(size(1[i])==0){return(i-1);}
}
}

Now it is easy to give another test for Cohen—Macaulayness.

proc isCohenMacaulayl(ideal I)
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{
int de=nvars(basering)-projdim(I*freemodule(1));
int di=dim(std(I));
return(de==di) ;

b

ring R=0, (x,y,2),ds;
ideal I=xz,yz;
isCohenMacaulay1(I);
//=> 0

I=x2-y3;
isCohenMacaulay1(I);
//->1

I=xz,yz,xy;
isCohenMacaulay1(I);
//-> 1

kill R;

The following procedure checks whether the deptiMok equal tod. It uses the proce-
dureAnn from primdec.1ib.

proc CohenMacaulayTestl(module M, int d)
{

return((d-projdim(M))==dim(std (Ann(M))));
}

LIB"primdec.lib";

ring R=0, (x,y,2),ds;
ideal I=xz,yz;

module M=Ix*freemodule(1l);
CohenMacaulayTest1(M,3);
//-> 0

I=x2+y2,27;
M=Ix*freemodule(1);
CohenMacaulayTest1(M,3);
//-> 1
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